Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats.

  • Nicole M Foley‎ et al.
  • Molecular biology and evolution‎
  • 2015‎

The phylogenetic and taxonomic relationships among the Old World leaf-nosed bats (Hipposideridae) and the closely related horseshoe bats (Rhinolophidae) remain unresolved. In this study, we generated a novel approximately 10-kb molecular data set of 19 nuclear exon and intron gene fragments for 40 bat species to elucidate the phylogenetic relationships within the families Rhinolophidae and Hipposideridae. We estimated divergence times and explored potential reasons for any incongruent phylogenetic signal. We demonstrated the effects of outlier taxa and genes on phylogenetic reconstructions and compared the relative performance of intron and exon data to resolve phylogenetic relationships. Phylogenetic analyses produced a well-resolved phylogeny, supporting the familial status of Hipposideridae and demonstrated the paraphyly of the largest genus, Hipposideros. A fossil-calibrated timetree and biogeographical analyses estimated that Rhinolophidae and Hipposideridae diverged in Africa during the Eocene approximately 42 Ma. The phylogram, the timetree, and a unique retrotransposon insertion supported the elevation of the subtribe Rhinonycterina to family level and which is diagnosed herein. Comparative analysis of diversification rates showed that the speciose genera Rhinolophus and Hipposideros underwent diversification during the Mid-Miocene Climatic Optimum. The intron versus exon analyses demonstrated the improved nodal support provided by introns for our optimal tree, an important finding for large-scale phylogenomic studies, which typically rely on exon data alone. With the recent outbreak of Middle East respiratory syndrome, caused by a novel coronavirus, the study of these species is urgent as they are considered the natural reservoir for emergent severe acute respiratory syndrome (SARS)-like coronaviruses. It has been shown that host phylogeny is the primary factor that determines a virus's persistence, replicative ability, and can act as a predictor of new emerging disease. Therefore, this newly resolved phylogeny can be used to direct future assessments of viral diversity and to elucidate the origin and development of SARS-like coronaviruses in mammals.


As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats.

  • Bruno F Simões‎ et al.
  • Molecular biology and evolution‎
  • 2019‎

Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555-560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.


Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals.

  • Marek Uvizl‎ et al.
  • Molecular biology and evolution‎
  • 2024‎

The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.


Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia.

  • Nicole S Paulat‎ et al.
  • Molecular biology and evolution‎
  • 2023‎

Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.


The Birth and Death of Olfactory Receptor Gene Families in Mammalian Niche Adaptation.

  • Graham M Hughes‎ et al.
  • Molecular biology and evolution‎
  • 2018‎

The olfactory receptor (OR) gene families, which govern mammalian olfaction, have undergone extensive expansion and contraction through duplication and pseudogenization. Previous studies have shown that broadly defined environmental adaptations (e.g., terrestrial vs. aquatic) are correlated with the number of functional and non-functional OR genes retained. However, to date, no study has examined species-specific gene duplications in multiple phylogenetically divergent mammals to elucidate OR evolution and adaptation. Here, we identify the OR gene families driving adaptation to different ecological niches by mapping the fate of species-specific gene duplications in the OR repertoire of 94 diverse mammalian taxa, using molecular phylogenomic methods. We analyze >70,000 OR gene sequences mined from whole genomes, generated from novel amplicon sequencing data, and collated with data from previous studies, comprising one of the largest OR studies to date. For the first time, we demonstrate statistically significant patterns of OR species-specific gene duplications associated with the presence of a functioning vomeronasal organ. With respect to dietary niche, we uncover a novel link between a large number of duplications in OR family 5/8/9 and herbivory. Our results also highlight differences between social and solitary niches, indicating that a greater OR repertoire expansion may be associated with a solitary lifestyle. This study demonstrates the utility of species-specific duplications in elucidating gene family evolution, revealing how the OR repertoire has undergone expansion and contraction with respect to a number of ecological adaptations in mammals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: