Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Response inhibition and error-monitoring in cystinosis (CTNS gene mutations): Behavioral and electrophysiological evidence of a diverse set of difficulties.

  • Ana A Francisco‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Cystinosis, a rare lysosomal storage disease, is characterized by cystine crystallization and accumulation within tissues and organs, including the kidneys and brain. Its impact on neural function appears mild relative to its effects on other organs, but therapeutic advances have led to substantially increased life expectancy, necessitating deeper understanding of its impact on neurocognitive function. Behaviorally, some deficits in executive function have been noted in this population, but the underlying neural processes are not understood. Using standardized cognitive assessments and a Go/No-Go response inhibition task in conjunction with high-density electrophysiological recordings (EEG), we sought to investigate the behavioral and neural dynamics of inhibition of a prepotent response and of error monitoring (critical components of executive function) in individuals with cystinosis, when compared to age-matched controls. Thirty-seven individuals diagnosed with cystinosis (7-36 years old, 24 women) and 45 age-matched controls (27 women) participated in this study. Analyses focused on N2 and P3 No-Go responses and error-related positivity (Pe). Atypical inhibitory processing was shown behaviorally. Electrophysiological differences were additionally found between the groups, with individuals with cystinosis showing larger No-Go P3s. Error-monitoring was likewise different between the groups, with those with cystinosis showing reduced Pe amplitudes.


It's all in the timing: Delayed feedback in autism may weaken predictive mechanisms during contour integration.

  • Emily J Knight‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Humans rely on predictive mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. While initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through conveyance of statistical predictions based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP) - the IC-effect - that occurs over lateral occipital scalp during the timeframe of the N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6-17-year-old children with ASD (n=32) or NT development (n=53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21ms later in ASD, even though timing of initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared to NT children. This delay in the feedback dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by statistical prediction mechanisms.


Reduced Proactive and Reactive Cognitive Flexibility in Older Adults Underlies Performance Costs During Dual-Task Walking: A Mobile Brain/Body Imaging (MoBI) Study.

  • David P Richardson‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Age-related reductions in cognitive flexibility may limit modulation of control processes during systematic increases to cognitive-motor demands, exacerbating dual-task costs. In this study, behavioral and neurophysiologic changes to proactive and reactive control during progressive cognitive-motor demands were compared across older and younger adults to explore the basis for age-differences in cognitive-motor interference (CMI). 19 younger (19 - 29 years old, mean age = 22.84 +/- 2.75 years, 6 male, 13 female) and 18 older (60 - 77 years old, mean age = 67.89 +/- 4.60 years, 9 male, 9 female) healthy adults completed cued task-switching while alternating between sitting and walking on a treadmill. Gait kinematics, task performance measures, and brain activity were recorded using electroencephalography (EEG) based Mobile Brain/Body Imaging (MoBI). Response accuracy on easier trial types improved in younger, but not older adults when they walked while performing the cognitive task. As difficulty increased, walking provoked accuracy costs in older, but not younger adults. Both groups registered faster responses and reduced gait variability during dual-task walking. Older adults exhibited lower amplitude modulations of proactive and reactive neural activity as cognitive-motor demands systematically increased, which may reflect reduced flexibility for progressive preparatory and reactive adjustments over behavioral control.


Intact Somatosensory Temporal Sensitivity in Adults on the Autism Spectrum: A High-Density Electrophysiological Mapping Study Using the Mismatch Negativity (MMN) Sensory Memory Paradigm.

  • Emily L Isenstein‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Atypical reactivity to somatosensory inputs is common in autism spectrum disorder and carries considerable impact on downstream social communication and quality of life. While behavioral and survey work have established differences in the perception of somatosensory information, little has been done to elucidate the underlying neurophysiological processes that drive these characteristics. Here, we implemented a duration-based somatosensory mismatch negativity paradigm to examine the role of temporal sensitivity and sensory memory in the processing of vibrotactile information in autistic (n=30) and neurotypical (n=30) adults. To capture the variability in responses between groups across a range of duration discrepancies, we compared the electrophysiological responses to frequent standard vibrations (100 ms) and four infrequent deviant vibrations (115, 130, 145, and 160 ms). The same stimuli were used in a follow-up behavioral task to determine active detection of the infrequent vibrations. We found no differences between the two groups with regard to discrimination between standard and deviant vibrations, demonstrating comparable neurologic and behavioral temporal somatosensory perception. However, exploratory analyses yielded subtle differences in amplitude at the N1 and P220 time points. Together, these results indicate that the temporal mechanisms of somatosensory discrimination are conserved in adults on the autism spectrum, though more general somatosensory processing may be affected. We discuss these findings in the broader context of the MMN literature in autism, as well as the potential role of cortical maturity in somatosensory mechanisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: