Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils.

  • Emil Dandanell Agerschou‎ et al.
  • eLife‎
  • 2019‎

Removing or preventing the formation of [Formula: see text]-synuclein aggregates is a plausible strategy against Parkinson's disease. To this end, we have engineered the [Formula: see text]-wrapin AS69 to bind monomeric [Formula: see text]-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of [Formula: see text]-synuclein and formation of visible [Formula: see text]-synuclein aggregates. In flies, AS69 reduced [Formula: see text]-synuclein aggregates and the locomotor deficit resulting from [Formula: see text]-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-[Formula: see text]-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.


Structural characterization of the Saccharomyces cerevisiae THO complex by small-angle X-ray scattering.

  • Jesper Buchhave Poulsen‎ et al.
  • PloS one‎
  • 2014‎

The THO complex participates during eukaryotic mRNA biogenesis in coupling transcription to formation and nuclear export of translation-competent messenger ribonucleoprotein particles. In Saccharomyces cerevisiae, THO has been defined as a heteropentamer composed of the Tho2p, Hpr1p, Tex1p, Mft1p, and Thp2p subunits and the overall three-dimensional shape of the complex has been established by negative stain electron microscopy. Here, we use small-angle X-ray scattering measured for isolated THO components (Mft1p and Thp2p) as well as THO subcomplexes (Mft1p-Thp2p and Mft1p-Thp2p-Tho2p) to construct structural building blocks that allow positioning of each subunit within the complex. To accomplish this, the individual envelopes determined for Mft1p and Thp2p are first fitted inside those of the Mft1p-Thp2p and Mft1p-Thp2p-Tho2p complexes. Next, the ternary complex structure is placed in the context of the five-component electron microscopy structure. Our model reveals not only the position of each protein in the THO complex relative to each other, but also shows that the pentamer is likely somewhat larger than what was observed by electron microscopy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: