Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway.

  • Wei Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Cisplatin (DDP)-based chemotherapy is a standard strategy for lung cancer, while chemoresistance remains a major therapeutic challenge. Recent evidence highlights the crucial regulatory roles of long non-coding RNAs (lncRNA) in tumor biology. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has important roles in regulating the proliferation, invasion and migration of lung cancer cell. High MALAT1 expression in lung cancer was related to poorer clinicopathologic features in this study. MALAT1 knockdown alone was sufficient to amplify DDP-induced repression of cell viability. MALAT1 knockdown could also sensitized DDP-resistant lung cancer cells (A549/DDP and H1299/DDP) to DDP. Further assays indicated that MALAT1 acted as a competing endogenous RNA to upregulate SOX9 expression by sponging miR-101 in DDP-resistant cancer cells, through Wnt signaling pathway. Moreover, SOX9 could bind to the promoter of MALAT1 to activate its transcription. Taken together, MALAT1, miR-101 and SOX9 form a feedback loop to enhance the chemo-resistance of lung cancer cell to DDP; this MALAT1-miR-101-SOX9 feedback loop plays an important role in the chemo-resistance of lung cancer cell to DDP and may serve as a potential target for cancer treatment.


An improved genome assembly of the fluke Schistosoma japonicum.

  • Fang Luo‎ et al.
  • PLoS neglected tropical diseases‎
  • 2019‎

Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. A single draft genome was available for S. japonicum, yet this assembly is very fragmented and only covers 90% of the genome, which make it difficult to be applied as a reference in functional genome analysis and genes discovery.


CT-based deep learning model: a novel approach to the preoperative staging in patients with peritoneal metastasis.

  • Jipeng Wang‎ et al.
  • Clinical & experimental metastasis‎
  • 2023‎

Peritoneal metastasis (PM) is a frequent manifestation of advanced abdominal malignancies. Accurately assessing the extent of PM before surgery is essential for patients to receive optimal treatment. Therefore, we propose to construct a deep learning (DL) model based on enhanced computed tomography (CT) images to stage PM preoperatively in patients. All 168 patients with PM underwent contrast-enhanced abdominal CT before either open surgery or laparoscopic exploration, and peritoneal cancer index (PCI) was used to evaluate patients during the surgical procedure. DL features were extracted from portal venous-phase abdominal CT scans and subjected to feature selection using the Spearman correlation coefficient and LASSO. The performance of models for preoperative staging was assessed in the validation cohort and compared against models based on clinical and radiomics (Rad) signature. The DenseNet121-SVM model demonstrated strong patient discrimination in both the training and validation cohorts, achieving AUC was 0.996 in training and 0.951 validation cohort, which were both higher than those of the Clinic model and Rad model. Decision curve analysis (DCA) showed that patients could potentially benefit more from treatment using the DL-SVM model, and calibration curves demonstrated good agreement with actual outcomes. The DL model based on portal venous-phase abdominal CT accurately predicts the extent of PM in patients before surgery, which can help maximize the benefits of treatment and optimize the patient's treatment plan.


Systematically improved in vitro culture conditions reveal new insights into the reproductive biology of the human parasite Schistosoma mansoni.

  • Jipeng Wang‎ et al.
  • PLoS biology‎
  • 2019‎

Schistosomes infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection, yet our understanding of sexual reproduction by schistosomes is limited because normal egg production is not sustained for more than a few days in vitro. Here, we describe culture conditions that support schistosome sexual development and sustained egg production in vitro. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs. Exploiting these new culture conditions, we explore the process of male-stimulated female maturation and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. We further report the characterization of a nuclear receptor (NR), which we call Vitellogenic Factor 1 (VF1), that is essential for female sexual development following pairing with a male worm. Taken together, these results provide a platform to study the fascinating sexual biology of these parasites on a molecular level, illuminating new strategies to control schistosome egg production.


Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation.

  • Hui Wang‎ et al.
  • PLoS pathogens‎
  • 2018‎

Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms.


Activation biosensor for G protein-coupled receptors: a FRET-based m1 muscarinic activation sensor that regulates G(q).

  • Seungwoo Chang‎ et al.
  • PloS one‎
  • 2012‎

We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I G(q)-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15-20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gα(q), and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by G(q). We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gα(q), in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets.


Schistosoma japonicum cathepsin B2 (SjCB2) facilitates parasite invasion through the skin.

  • Bingkuan Zhu‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Cercariae invasion of the human skin is the first step in schistosome infection. Proteases play key roles in this process. However, little is known about the related hydrolytic enzymes in Schistosoma japonicum. Here, we investigated the biochemical features, tissue distribution and biological roles of a cathepsin B cysteine protease, SjCB2, in the invasion process of S. japonicum cercariae. Enzyme activity analysis revealed that recombinant SjCB2 is a typical cysteine protease with optimum temperature and pH for activity at 37°C and 4.0, respectively, and can be totally inhibited by the cysteine protease inhibitor E-64. Immunoblotting showed that both the zymogen (50 kDa) and mature enzyme (30.5 kDa) forms of SjCB2 are expressed in the cercariae. It was observed that SjCB2 localized predominantly in the acetabular glands and their ducts of cercariae, suggesting that the protease could be released during the invasion process. The protease degraded collagen, elastin, keratin, fibronectin, immunoglobulin (A, G and M) and complement C3, protein components of the dermis and immune system. In addition, proteomic analysis demonstrated that SjCB2 can degrade the human epidermis. Furthermore, it was showed that anti-rSjCB2 IgG significantly reduced (22.94%) the ability of the cercariae to invade the skin. The cysteine protease, SjCB2, located in the acetabular glands and their ducts of S. japonicum cercariae. We propose that SjCB2 facilitates skin invasion by degrading the major proteins of the epidermis and dermis. However, this cysteine protease may play additional roles in host-parasite interaction by degrading immunoglobins and complement protein.


A male-derived nonribosomal peptide pheromone controls female schistosome development.

  • Rui Chen‎ et al.
  • Cell‎
  • 2022‎

Schistosomes cause morbidity and death throughout the developing world due to the massive numbers of eggs female worms deposit into the blood of their host. Studies dating back to the 1920s show that female schistosomes rely on constant physical contact with a male worm both to become and remain sexually mature; however, the molecular details governing this process remain elusive. Here, we uncover a nonribosomal peptide synthetase that is induced in male worms upon pairing with a female and find that it is essential for the ability of male worms to stimulate female development. We demonstrate that this enzyme generates β-alanyl-tryptamine that is released by paired male worms. Furthermore, synthetic β-alanyl-tryptamine can replace male worms to stimulate female sexual development and egg laying. These data reveal that peptide-based pheromone signaling controls female schistosome sexual maturation, suggesting avenues for therapeutic intervention and uncovering a role for nonribosomal peptides as metazoan signaling molecules.


Generation of Urothelial Cells from Mouse-Induced Pluripotent Stem Cells.

  • Dongxu Zhang‎ et al.
  • International journal of stem cells‎
  • 2022‎

The search for a suitable alternative for urethral defect is a challenge in the field of urethral tissue engineering. Induced pluripotent stem cells (iPSCs) possess multipotential for differentiation. The in vitro derivation of urothelial cells from mouse-iPSCs (miPSCs) has thus far not been reported. The purpose of this study was to establish an efficient and robust differentiation protocol for the differentiation of miPSCs into urothelial cells.


3-oxoacyl-ACP reductase from Schistosoma japonicum: integrated in silico-in vitro strategy for discovering antischistosomal lead compounds.

  • Jian Liu‎ et al.
  • PloS one‎
  • 2013‎

Schistosomiasis is a disease caused by parasitic worms and more than 200 million people are infected worldwide. The emergence of resistance to the most commonly used drug, praziquantel (PZQ), makes the development of novel drugs an urgent task. 3-oxoacyl-ACP reductase (OAR), a key enzyme involved in the fatty acid synthesis pathway, has been identified as a potential drug target against many pathogenic organisms. However, no research on Schistosoma japonicum OAR (SjOAR) has been reported. The characterization of the SjOAR protein will provide new strategies for screening antischistosomal drugs that target SjOAR.


Ubiquitin-specific peptidase 28 enhances STAT3 signaling and promotes cell growth in non-small-cell lung cancer.

  • Pengling Li‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Ubiquitin-specific peptidase 28 (USP28) has been reported to play significant roles in several tumors, but its roles in non-small-cell lung cancer (NSCLC) is still unknown. In this study, we aimed to investigate the biological function and molecular mechanisms of USP28 in NSCLC.


A metabotropic glutamate receptor affects the growth and development of Schistosoma japonicum.

  • Xiaoling Wang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Schistosomiasis is a zoonotic parasitic disease caused by schistosome infection that severely threatens human health. Therapy relies mainly on single drug treatment with praziquantel. Therefore, there is an urgent need to develop alternative medicines. The glutamate neurotransmitter in helminths is involved in many physiological functions by interacting with various cell-surface receptors. However, the roles and detailed regulatory mechanisms of the metabotropic glutamate receptor (mGluR) in the growth and development of Schistosoma japonicum remain poorly understood. In this study, we identified two putative mGluRs in S. japonicum and named them SjGRM7 (Sjc_001309, similar to GRM7) and SjGRM (Sjc_001163, similar to mGluR). Further validation using a calcium mobilization assay showed that SjGRM7 and SjGRM are glutamate-specific. The results of in situ hybridization showed that SjGRM is mainly located in the nerves of both males and gonads of females, and SjGRM7 is principally found in the nerves and gonads of males and females. In a RNA interference experiment, the results showed that SjGRM7 knockdown by double-stranded RNA (dsRNA) in S. japonicum caused edema, chassis detachment, and separation of paired worms in vitro. Furthermore, dsRNA interference of SjGRM7 could significantly affect the development and egg production of male and female worms in vivo and alleviate the host liver granulomas and fibrosis. Finally, we examined the molecular mechanisms underlying the regulatory function of mGluR using RNA sequencing. The data suggest that SjGRM7 propagates its signals through the G protein-coupled receptor signaling pathway to promote nervous system development in S. japonicum. In conclusion, SjGRM7 is a potential target for anti-schistosomiasis. This study enables future research on the mechanisms of action of Schistosomiasis japonica drugs.


Efficacy and Safety of Combination Comprising Tamsulosin and PDE5-Is, Relative to Monotherapies, in Treating Lower Urinary Tract Symptoms and Erectile Dysfunction Associated With Benign Prostatic Hyperplasia: A Meta-Analysis.

  • Kai Sun‎ et al.
  • American journal of men's health‎
  • 2020‎

We report safety and efficacy of a combination therapy, comprising tamsulosin and phosphodiesterase type 5 inhibitors (PDE5-Is), relative to monotherapy, to ascertain its potential in treating lower urinary tract symptoms (LUTS) and erectile dysfunction (ED) secondary to benign prostatic hyperplasia (BPH) after 3 months' treatment. We screened MEDLINE, EMBASE, and the Cochrane Controlled Trials Register databases, for randomized controlled trials, and obtained eight articles comprising 1144 participants. Results showed that the combination group had superior outcomes with regard to International Prostate Symptom Score (IPSS) and Qmax, compared to the other two groups. The combination group also had superior efficacy with regard to International Index of Erectile Function (IIEF) than the tamsulosin group, but not over the PDE5-Is group. Further, the combination group showed better efficacy in IPSS voiding and quality of life (QoL) compared to the PDE5-Is group. An analysis of safety outcomes revealed extremely high adverse events (AEs) and pain in the combination group. However, therapy discontinuation due to pain and AEs did not increase with increase in AEs. Overall, our findings indicate that a combination of tamsulosin and PDE5-Is is superior to individual tamsulosin and PDE5-Is monotherapy, with regard to improving LUTS and ED secondary to BPH.


Aldose reductase from Schistosoma japonicum: crystallization and structure-based inhibitor screening for discovering antischistosomal lead compounds.

  • Jian Liu‎ et al.
  • Parasites & vectors‎
  • 2013‎

Schistosomiasis is a neglected tropical disease with high morbidity and mortality in the world. Currently, the treatment of this disease depends almost exclusively on praziquantel (PZQ); however, the emergence of drug resistance to PZQ in schistosomes makes the development of novel drugs an urgent task. Aldose reductase (AR), an important component that may be involved in the schistosome antioxidant defense system, is predicted as a potential drug target.


Regulating G protein-coupled receptors by topological inversion.

  • Bray Denard‎ et al.
  • eLife‎
  • 2019‎

G protein-coupled receptors (GPCRs) are a family of proteins containing seven transmembrane helices, with the N- and C-terminus of the protein located at the extracellular space and cytosol, respectively. Here, we report that ceramide or related sphingolipids might invert the topology of many GPCRs that contain a GXXXN motif in their first transmembrane helix. The functional significance of this topological regulation is illustrated by the CCR5 chemokine receptor. In the absence of lipopolysaccharide (LPS), CCR5 adopts a topology consistent with that of GPCR, allowing mouse peritoneal macrophages to migrate toward its ligand CCL5. LPS stimulation results in increased production of dihydroceramide, which inverts the topology of CCR5, preventing macrophages from migrating toward CCL5. These results suggest that GPCRs may not always adopt the same topology and can be regulated through topological inversion.


A chromosome-level genome of the human blood fluke Schistosoma japonicum identifies the genomic basis of host-switching.

  • Fang Luo‎ et al.
  • Cell reports‎
  • 2022‎

The evolution and adaptation of S. japonicum, a zoonotic parasite that causes human schistosomiasis, remain unclear because of the lack of whole-genome data. We construct a chromosome-level S. japonicum genome and analyze it together with 72 samples representing six populations of the entire endemic region. We observe a Taiwan zoophilic lineage splitting from zoonotic populations ∼45,000 years ago, consistent with the divergent history of their intermediate hosts. Interestingly, we detect a severe population bottleneck in S. japonicum, largely coinciding with human history in Asia during the last glacial maximum. We identify several genomic regions underlying natural selection, including GATAD2A and Lmln, both showing remarkable differentiation among different areas. RNAi knockdown suggests association of GATAD2A with parasite development and infection in definitive hosts, while Lmln relates to the specificity of the intermediate hosts. Our study provides insights into the evolution of S. japonicum and serves as a resource for further studies.


Helminth infection impacts hematopoiesis.

  • Tobias Wijshake‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. Here we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm which causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood, and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.


Dynamic profiles of lncRNAs reveal a functional natural antisense RNA that regulates the development of Schistosoma japonicum.

  • Shaoyun Cheng‎ et al.
  • PLoS pathogens‎
  • 2024‎

Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite's developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S. japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385, which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.


Homer 2 tunes G protein-coupled receptors stimulus intensity by regulating RGS proteins and PLCbeta GAP activities.

  • Dong Min Shin‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Homers are scaffolding proteins that bind G protein-coupled receptors (GPCRs), inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs), ryanodine receptors, and TRP channels. However, their role in Ca2+ signaling in vivo is not known. Characterization of Ca2+ signaling in pancreatic acinar cells from Homer2-/- and Homer3-/- mice showed that Homer 3 has no discernible role in Ca2+ signaling in these cells. In contrast, we found that Homer 2 tunes intensity of Ca2+ signaling by GPCRs to regulate the frequency of [Ca2+]i oscillations. Thus, deletion of Homer 2 increased stimulus intensity by increasing the potency for agonists acting on various GPCRs to activate PLCbeta and evoke Ca2+ release and oscillations. This was not due to aberrant localization of IP3Rs in cellular microdomains or IP3R channel activity. Rather, deletion of Homer 2 reduced the effectiveness of exogenous regulators of G proteins signaling proteins (RGS) to inhibit Ca2+ signaling in vivo. Moreover, Homer 2 preferentially bound to PLCbeta in pancreatic acini and brain extracts and stimulated GAP activity of RGS4 and of PLCbeta in an in vitro reconstitution system, with minimal effect on PLCbeta-mediated PIP2 hydrolysis. These findings describe a novel, unexpected function of Homer proteins, demonstrate that RGS proteins and PLCbeta GAP activities are regulated functions, and provide a molecular mechanism for tuning signal intensity generated by GPCRs and, thus, the characteristics of [Ca2+]i oscillations.


Dynamic transcriptomes identify biogenic amines and insect-like hormonal regulation for mediating reproduction in Schistosoma japonicum.

  • Jipeng Wang‎ et al.
  • Nature communications‎
  • 2017‎

Eggs produced by the mature female parasite are responsible for the pathogenesis and transmission of schistosomiasis. Female schistosomes rely on a unique male-induced strategy to accomplish reproductive development, a process that is incompletely understood. Here we map detailed transcriptomic profiles of male and female Schistosoma japonicum across eight time points throughout the sexual developmental process from pairing to maturation. The dynamic gene expression pattern data reveal clear sex-related characteristics, indicative of an unambiguous functional division between males and females during their interplay. Cluster analysis, in situ hybridization and RNAi assays indicate that males likely use biogenic amine neurotransmitters through the nervous system to control and maintain pairing with females. In addition, the analyses indicate that reproductive development of females involves an insect-like hormonal regulation. These data sets and analyses serve as a foundation for deeper study of sexual development in this pathogen and identification of novel anti-schistosomal interventions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: