Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Assessment of genotype imputation methods.

  • Joanna M Biernacka‎ et al.
  • BMC proceedings‎
  • 2009‎

Several methods have been proposed to impute genotypes at untyped markers using observed genotypes and genetic data from a reference panel. We used the Genetic Analysis Workshop 16 rheumatoid arthritis case-control dataset to compare the performance of four of these imputation methods: IMPUTE, MACH, PLINK, and fastPHASE. We compared the methods' imputation error rates and performance of association tests using the imputed data, in the context of imputing completely untyped markers as well as imputing missing genotypes to combine two datasets genotyped at different sets of markers. As expected, all methods performed better for single-nucleotide polymorphisms (SNPs) in high linkage disequilibrium with genotyped SNPs. However, MACH and IMPUTE generated lower imputation error rates than fastPHASE and PLINK. Association tests based on allele "dosage" from MACH and tests based on the posterior probabilities from IMPUTE provided results closest to those based on complete data. However, in both situations, none of the imputation-based tests provide the same level of evidence of association as the complete data at SNPs strongly associated with disease.


Analysis of variation in NF-kappaB genes and expression levels of NF-kappaB-regulated molecules.

  • Wen Liu-Mares‎ et al.
  • BMC proceedings‎
  • 2007‎

The nuclear factor-kappaB (NF-kappaB) family of transcription factors regulates the expression of a variety of genes involved in apoptosis and immune response. We examined relationships between genotypes at five NF-kappaB subunits (NFKB1, NFKB2, REL, RELA, and RELB) and variable expression levels of 15 NF-kappaB regulated proteins with heritability greater than 0.40: BCL2A1, BIRC2, CD40, CD44, CD80, CFLAR, CR2, FAS, ICAM1, IL15, IRF1, JUNB, MYC, SLC2A5, and VCAM1. SNP genotypes and expression phenotypes from pedigrees of Utah residents with ancestry from northern and western Europe were provided by Genetic Analysis Workshop 15 and supplemented with additional genotype data from the International HapMap Consortium. We conducted association, linkage, and family-based association analyses between each candidate gene and the 15 heritable expression phenotypes. We observed consistent results in association and linkage analyses of the NFKB1 region (encoding p50) and levels of FAS and IRF1 expression. FAS is a cell surface protein that also belongs to the TNF-receptor family; signals through FAS are able to induce apoptosis. IRF1 is a member of the interferon regulatory transcription factor family, which has been shown to regulate apoptosis and tumor-suppression. Analyses in the REL region (encoding c-Rel) revealed linkage and association with CD40 phenotype. CD40 proteins belong to the tumor necrosis factor (TNF)-receptor family, which mediates a broad variety of immune and inflammatory responses. We conclude that variation in the genes encoding p50 and c-Rel may play a role in NF-kappaB-related transcription of FAS, IRF1, and CD40.


Comparison of tagging single-nucleotide polymorphism methods in association analyses.

  • Ellen L Goode‎ et al.
  • BMC proceedings‎
  • 2007‎

Several methods to identify tagging single-nucleotide polymorphisms (SNPs) are in common use for genetic epidemiologic studies; however, there may be loss of information when using only a subset of SNPs. We sought to compare the ability of commonly used pairwise, multimarker, and haplotype-based tagging SNP selection methods to detect known associations with quantitative expression phenotypes. Using data from HapMap release 21 on unrelated Utah residents with ancestors from northern and western Europe (CEPH-Utah, CEU), we selected tagging SNPs in five chromosomal regions using ldSelect, Tagger, and TagSNPs. We found that SNP subsets did not substantially overlap, and that the use of trio data did not greatly impact SNP selection. We then tested associations between HapMap genotypes and expression phenotypes on 28 CEU individuals as part of Genetic Analysis Workshop 15. Relative to the use of all SNPs (n = 210 SNPs across all regions), most subset methods were able to detect single-SNP and haplotype associations. Generally, pairwise selection approaches worked extremely well, relative to use of all SNPs, with marked reductions in the number of SNPs required. Haplotype-based approaches, which had identified smaller SNP subsets, missed associations in some regions. We conclude that the optimal tagging SNP method depends on the true model of the genetic association (i.e., whether a SNP or haplotype is responsible); unfortunately, this is often unknown at the time of SNP selection. Additional evaluations using empirical and simulated data are needed.


Genetic Analysis Workshop 16: Strategies for genome-wide association study analyses.

  • L Adrienne Cupples‎ et al.
  • BMC proceedings‎
  • 2009‎

No abstract available


Single versus multiple imputation for genotypic data.

  • Brooke L Fridley‎ et al.
  • BMC proceedings‎
  • 2009‎

Due to the growing need to combine data across multiple studies and to impute untyped markers based on a reference sample, several analytical tools for imputation and analysis of missing genotypes have been developed. Current imputation methods rely on single imputation, which ignores the variation in estimation due to imputation. An alternative to single imputation is multiple imputation. In this paper, we assess the variation in imputation by completing both single and multiple imputations of genotypic data using MACH, a commonly used hidden Markov model imputation method. Using data from the North American Rheumatoid Arthritis Consortium genome-wide study, the use of single and multiple imputation was assessed in four regions of chromosome 1 with varying levels of linkage disequilibrium and association signals. Two scenarios for missing genotypic data were assessed: imputation of untyped markers and combination of genotypic data from two studies. This limited study involving four regions indicates that, contrary to expectations, multiple imputations may not be necessary.


Genetic Analysis Workshop 15: gene expression analysis and approaches to detecting multiple functional loci.

  • Heather J Cordell‎ et al.
  • BMC proceedings‎
  • 2007‎

No abstract available


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: