Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 153 papers

Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium.

  • Jieping Lei‎ et al.
  • Human genetics‎
  • 2016‎

Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry.


Five endometrial cancer risk loci identified through genome-wide association analysis.

  • Timothy Ht Cheng‎ et al.
  • Nature genetics‎
  • 2016‎

We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.


Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

  • Heather S L Jim‎ et al.
  • Journal of genetics and genome research‎
  • 2015‎

Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.


Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2016‎

A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.


Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.

  • Fergus J Couch‎ et al.
  • Nature communications‎
  • 2016‎

Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.


No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.

  • Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2‎ et al.
  • Gynecologic oncology‎
  • 2016‎

Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370.


Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.

  • Matthew M Roforth‎ et al.
  • Bone‎
  • 2015‎

Age-related bone loss in humans is associated with a decrease in bone formation relative to bone resorption, although the mechanisms for this impairment in bone formation with aging are not well understood. It is known that the precursors for the bone-forming osteoblasts reside in the mesenchymal cell population in bone marrow. Thus, in an effort to identify relevant genetic pathways that are altered with aging, we examined the gene expression and DNA methylation patterns from a highly enriched bone marrow mesenchymal cell population from young (mean age, 28.7 years) versus old (mean age, 73.3 years) women. Bone marrow mononuclear cells from these women were depleted of hematopoietic lineage (lin) and endothelial cells using a combination of magnetic- and fluorescence-activated cell sorting, yielding a previously characterized mesenchymal cell population (lin-/CD34-/CD31- cells) that is capable of osteoblast differentiation. Whole transcriptome RNA sequencing (RNAseq) of freshly isolated cells (without in vitro culture) identified 279 differentially expressed genes (p < 0.05, false discovery rate [q]< 0.10) between the young and old subjects. Pathway analysis revealed statistically significant (all p < 0.05) alterations in protein synthesis and degradation pathways, as well as mTOR, gap junction, calcium, melatonin and NFAT signaling pathways. Further, Reduced Representational Bisulphite sequencing (RRBS DNA methylation sequencing) revealed significant differences in methylation between the young and old subjects surrounding the promoters of 1528 target genes that also exhibited significant differences in gene expression by RNAseq. In summary, these studies provide novel insights into potential pathways affected by aging in a highly enriched human mesenchymal cell population analyzed without the confounding effects of in vitro culture. Specifically, our finding of alterations in several genes and pathways leading to impaired protein synthesis and turnover with aging in bone marrow mesenchymal cells points to the need for further studies examining how these changes, as well as the other alterations with aging that we identified, may contribute to the age-related impairment in osteoblast formation and/or function.


Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers.

  • Christine Mehner‎ et al.
  • Oncotarget‎
  • 2015‎

Ovarian cancer represents the most lethal tumor type among malignancies of the female reproductive system. Overall survival rates remain low. In this study, we identify the serine protease inhibitor Kazal type 1 (SPINK1) as a potential therapeutic target for a subset of ovarian cancers. We show that SPINK1 drives ovarian cancer cell proliferation through activation of epidermal growth factor receptor (EGFR) signaling, and that SPINK1 promotes resistance to anoikis through a distinct mechanism involving protease inhibition. In analyses of ovarian tumor specimens from a Mayo Clinic cohort of 490 patients, we further find that SPINK1 immunostaining represents an independent prognostic factor for poor survival, with the strongest association in patients with nonserous histological tumor subtypes (endometrioid, clear cell, and mucinous). This study provides novel insight into the fundamental processes underlying ovarian cancer progression, and also suggests new avenues for development of molecularly targeted therapies.


Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2015‎

Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.


Effects of Age and Estrogen on Skeletal Gene Expression in Humans as Assessed by RNA Sequencing.

  • Joshua N Farr‎ et al.
  • PloS one‎
  • 2015‎

Precise delineation of the specific genes and pathways altered with aging and estrogen (E) therapy may lead to new skeletal biomarkers and the development of novel bone therapeutics. Previous human bone studies, however, have been limited by only examining pre-specified genes and pathways. High-throughput RNA sequencing (RNAseq), on the other hand, offers an unbiased approach to examine the entire transcriptome. Here we present an RNAseq analysis of human bone samples, obtained from iliac crest needle biopsies, to yield the first in vivo interrogation of all genes and pathways that may be altered in bone with aging and E therapy in humans. 58 healthy women were studied, including 19 young women (mean age ± SD, 30.3 ± 5.4 years), 19 old women (73.1 ± 6.6 years), and 20 old women treated with 3 weeks of E therapy (70.5 ± 5.2 years). Using generally accepted criteria (false discovery rate [q] < 0.10), aging altered a total of 678 genes and 12 pathways, including a subset known to regulate bone metabolism (e.g., Notch). Interestingly, the LEF1 transcription factor, which is a classical downstream target of the Wnt/β-catenin signaling pathway, was significantly downregulated in the bones from the old versus young women; consistent with this, LEF1 binding sites were significantly enriched in the promoter regions of the differentially expressed genes in the old versus young women, suggesting that aging was associated with alterations in Wnt signaling in bone. Further, of the 21 unique genes altered in bone by E therapy, the expression of INHBB (encoding for the inhibin, beta B polypeptide), which decreased with aging (by 0.6-fold), was restored to young adult levels in response to E therapy. In conclusion, our data demonstrate that aging alters a substantial portion of the skeletal transcriptome, whereas E therapy appears to have significant, albeit less wide-ranging effects. These data provide a valuable resource for the potential identification of novel biomarkers associated with age-related bone loss and also highlight potential pathways that could be targeted to treat osteoporosis.


Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods.

  • Samantha J McDonough‎ et al.
  • PloS one‎
  • 2019‎

Archival tissues represent a rich resource for clinical genomic studies, particularly when coupled with comprehensive medical records. Use of these in next generation sequencing (NGS) is a priority. Nine formalin-fixed paraffin-embedded (FFPE) DNA extraction methods were evaluated using twelve FFPE samples of varying tissue types. Quality assessment included total yield, percent dsDNA, fragment analysis and multiplex PCR. After assessment, three tissue types from four FFPE DNA methods were selected for NGS downstream evaluation, targeted and whole exome sequencing. In addition, two low input library protocols were evaluated for WES. Analysis revealed average coverage across the target regions for WES was ~20-30X for all four FFPE DNA extraction methods. For the targeted panels, the highest molecular tag coverage was obtained with the Kingfisher FFPE extraction method. The genotype concordance was 99% for the commonly called variant positions between all four extraction methods with the targeted PCR NGS panel and 96% with WES. Assessing quality of extracted DNA aids in selecting the optimal NGS approach, and the choice of both DNA extraction and library preparation approaches can impact the performance of archival tissue in NGS.


Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility.

  • Madalene Earp‎ et al.
  • PloS one‎
  • 2018‎

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.


Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer.

  • Marc A Becker‎ et al.
  • BMC cancer‎
  • 2016‎

Mammalian target of rapamycin (mTOR) represents a key downstream intermediate for a myriad of oncogenic receptor tyrosine kinases. In the case of the insulin-like growth factor (IGF) pathway, the mTOR complex (mTORC1) mediates IGF-1 receptor (IGF-1R)-induced estrogen receptor alpha (ERα) phosphorylation/activation and leads to increased proliferation and growth in breast cancer cells. As a result, the prevalence of mTOR inhibitors combined with hormonal therapy has increased in recent years. Conversely, activated mTORC1 provides negative feedback regulation of IGF signaling via insulin receptor substrate (IRS)-1/2 serine phosphorylation and subsequent proteasomal degradation. Thus, the IGF pathway may provide escape (e.g. de novo or acquired resistance) from mTORC1 inhibitors. It is therefore plausible that combined inhibition of mTORC1 and IGF-1R for select subsets of ER-positive breast cancer patients presents as a viable therapeutic option.


Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts.

  • Kristina A Butler‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX) or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID) mice from Epstein-Barr virus (EBV)-infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab) to 5.6% (n = 160 with rituximab), and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth.


Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform.

  • Monica M Reinholz‎ et al.
  • BMC medical genomics‎
  • 2010‎

The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel v1 (1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.


Assessment of genotype imputation methods.

  • Joanna M Biernacka‎ et al.
  • BMC proceedings‎
  • 2009‎

Several methods have been proposed to impute genotypes at untyped markers using observed genotypes and genetic data from a reference panel. We used the Genetic Analysis Workshop 16 rheumatoid arthritis case-control dataset to compare the performance of four of these imputation methods: IMPUTE, MACH, PLINK, and fastPHASE. We compared the methods' imputation error rates and performance of association tests using the imputed data, in the context of imputing completely untyped markers as well as imputing missing genotypes to combine two datasets genotyped at different sets of markers. As expected, all methods performed better for single-nucleotide polymorphisms (SNPs) in high linkage disequilibrium with genotyped SNPs. However, MACH and IMPUTE generated lower imputation error rates than fastPHASE and PLINK. Association tests based on allele "dosage" from MACH and tests based on the posterior probabilities from IMPUTE provided results closest to those based on complete data. However, in both situations, none of the imputation-based tests provide the same level of evidence of association as the complete data at SNPs strongly associated with disease.


Evaluation of clustering and genotype distribution for replication in genome wide association studies: the age-related eye disease study.

  • Albert O Edwards‎ et al.
  • PloS one‎
  • 2008‎

Genome-wide association studies (GWASs) assess correlation between traits and DNA sequence variation using large numbers of genetic variants such as single nucleotide polymorphisms (SNPs) distributed across the genome. A GWAS produces many trait-SNP associations with low p-values, but few are replicated in subsequent studies. We sought to determine if characteristics of the genomic loci associated with a trait could be used to identify initial associations with a higher chance of replication in a second cohort. Data from the age-related eye disease study (AREDS) of 100,000 SNPs on 395 subjects with and 198 without age-related macular degeneration (AMD) were employed. Loci highly associated with AMD were characterized based on the distribution of genotypes, level of significance, and clustering of adjacent SNPs also associated with AMD suggesting linkage disequilibrium or multiple effects. Forty nine loci were highly associated with AMD, including 3 loci (CFH, C2/BF, LOC387715/HTRA1) already known to contain important genetic risks for AMD. One additional locus (C3) reported during the course of this study was identified and replicated in an additional study group. Tag-SNPs and haplotypes for each locus were evaluated for association with AMD in additional cohorts to account for population differences between discovery and replication subjects, but no additional clearly significant associations were identified. Relying on a significant genotype tests using a log-additive model would have excluded 57% of the non-replicated and none of the replicated loci, while use of other SNP features and clustering might have missed true associations.


Evaluation of a new high-dimensional miRNA profiling platform.

  • Julie M Cunningham‎ et al.
  • BMC medical genomics‎
  • 2009‎

MicroRNAs (miRNAs) are a class of approximately 22 nucleotide long, widely expressed RNA molecules that play important regulatory roles in eukaryotes. To investigate miRNA function, it is essential that methods to quantify their expression levels be available.


Analysis of variation in NF-kappaB genes and expression levels of NF-kappaB-regulated molecules.

  • Wen Liu-Mares‎ et al.
  • BMC proceedings‎
  • 2007‎

The nuclear factor-kappaB (NF-kappaB) family of transcription factors regulates the expression of a variety of genes involved in apoptosis and immune response. We examined relationships between genotypes at five NF-kappaB subunits (NFKB1, NFKB2, REL, RELA, and RELB) and variable expression levels of 15 NF-kappaB regulated proteins with heritability greater than 0.40: BCL2A1, BIRC2, CD40, CD44, CD80, CFLAR, CR2, FAS, ICAM1, IL15, IRF1, JUNB, MYC, SLC2A5, and VCAM1. SNP genotypes and expression phenotypes from pedigrees of Utah residents with ancestry from northern and western Europe were provided by Genetic Analysis Workshop 15 and supplemented with additional genotype data from the International HapMap Consortium. We conducted association, linkage, and family-based association analyses between each candidate gene and the 15 heritable expression phenotypes. We observed consistent results in association and linkage analyses of the NFKB1 region (encoding p50) and levels of FAS and IRF1 expression. FAS is a cell surface protein that also belongs to the TNF-receptor family; signals through FAS are able to induce apoptosis. IRF1 is a member of the interferon regulatory transcription factor family, which has been shown to regulate apoptosis and tumor-suppression. Analyses in the REL region (encoding c-Rel) revealed linkage and association with CD40 phenotype. CD40 proteins belong to the tumor necrosis factor (TNF)-receptor family, which mediates a broad variety of immune and inflammatory responses. We conclude that variation in the genes encoding p50 and c-Rel may play a role in NF-kappaB-related transcription of FAS, IRF1, and CD40.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: