Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 68 papers

Improved survival among colon cancer patients with increased differentially expressed pathways.

  • Martha L Slattery‎ et al.
  • BMC medicine‎
  • 2015‎

Studies of colorectal cancer (CRC) have shown that hundreds to thousands of genes are differentially expressed in tumors when compared to normal tissue samples. In this study, we evaluate how genes that are differentially expressed in colon versus normal tissue influence survival.


Genomic regulation of invasion by STAT3 in triple negative breast cancer.

  • Joy M McDaniel‎ et al.
  • Oncotarget‎
  • 2017‎

Breast cancer is a heterogeneous disease comprised of four molecular subtypes defined by whether the tumor-originating cells are luminal or basal epithelial cells. Breast cancers arising from the luminal mammary duct often express estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth receptor 2 (HER2). Tumors expressing ER and/or PR are treated with anti-hormonal therapies, while tumors overexpressing HER2 are targeted with monoclonal antibodies. Immunohistochemical detection of ER, PR, and HER2 receptors/proteins is a critical step in breast cancer diagnosis and guided treatment. Breast tumors that do not express these proteins are known as "triple negative breast cancer" (TNBC) and are typically basal-like. TNBCs are the most aggressive subtype, with the highest mortality rates and no targeted therapy, so there is a pressing need to identify important TNBC tumor regulators. The signal transducer and activator of transcription 3 (STAT3) transcription factor has been previously implicated as a constitutively active oncogene in TNBC. However, its direct regulatory gene targets and tumorigenic properties have not been well characterized. By integrating RNA-seq and ChIP-seq data from 2 TNBC tumors and 5 cell lines, we discovered novel gene signatures directly regulated by STAT3 that were enriched for processes involving inflammation, immunity, and invasion in TNBC. Functional analysis revealed that STAT3 has a key role regulating invasion and metastasis, a characteristic often associated with TNBC. Our findings suggest therapies targeting STAT3 may be important for preventing TNBC metastasis.


Effects of sequence variation on differential allelic transcription factor occupancy and gene expression.

  • Timothy E Reddy‎ et al.
  • Genome research‎
  • 2012‎

A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences.


ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

  • Stephen G Landt‎ et al.
  • Genome research‎
  • 2012‎

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.


Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner.

  • Jason Gertz‎ et al.
  • Genome research‎
  • 2012‎

Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2.


Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation.

  • Jason Gertz‎ et al.
  • PLoS genetics‎
  • 2011‎

The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS) to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92%) occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance) of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.


Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer.

  • Zannel Blanchard‎ et al.
  • Genome research‎
  • 2019‎

Estrogen receptor 1 (ESR1) mutations have been identified in hormone therapy-resistant breast cancer and primary endometrial cancer. Analyses in breast cancer suggest that mutant ESR1 exhibits estrogen-independent activity. In endometrial cancer, ESR1 mutations are associated with worse outcomes and less obesity, however, experimental investigation of these mutations has not been performed. Using a unique CRISPR/Cas9 strategy, we introduced the D538G mutation, a common endometrial cancer mutation that alters the ligand binding domain of ESR1, while epitope tagging the endogenous locus. We discovered estrogen-independent mutant ESR1 genomic binding that is significantly altered from wild-type ESR1. The D538G mutation impacted expression, including a large set of nonestrogen-regulated genes, and chromatin accessibility, with most affected loci bound by mutant ESR1. Mutant ESR1 is distinct from constitutive ESR1 activity because mutant-specific changes are not recapitulated with prolonged estrogen exposure. Overall, the D538G mutant ESR1 confers estrogen-independent activity while causing additional regulatory changes in endometrial cancer cells that are distinct from breast cancer cells.


MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer.

  • Marcel A Dammert‎ et al.
  • Nature communications‎
  • 2019‎

MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.


FFPEcap-seq: a method for sequencing capped RNAs in formalin-fixed paraffin-embedded samples.

  • Jeffery M Vahrenkamp‎ et al.
  • Genome research‎
  • 2019‎

The majority of clinical cancer specimens are preserved as formalin-fixed paraffin-embedded (FFPE) samples. For clinical molecular tests to have wide-reaching impact, they must be applicable to FFPE material. Accurate quantitative measurements of RNA derived from FFPE specimens is challenging because of low yields and high amounts of degradation. Here, we present FFPEcap-seq, a method specifically designed for sequencing capped 5' ends of RNA derived from FFPE samples. FFPEcap-seq combines enzymatic enrichment of 5' capped RNAs with template switching to create sequencing libraries. We find that FFPEcap-seq can faithfully capture mRNA expression levels in FFPE specimens while also detecting enhancer RNAs that arise from distal regulatory regions. FFPEcap-seq is a fast and straightforward method for making high-quality 5' end RNA-seq libraries from FFPE-derived RNA.


CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation.

  • Joshua D Stover‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy.


Steroid Hormone Receptor and Infiltrating Immune Cell Status Reveals Therapeutic Vulnerabilities of ESR1-Mutant Breast Cancer.

  • Michelle M Williams‎ et al.
  • Cancer research‎
  • 2021‎

Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.


Hotspot ESR1 Mutations Are Multimodal and Contextual Modulators of Breast Cancer Metastasis.

  • Zheqi Li‎ et al.
  • Cancer research‎
  • 2022‎

Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer.


Genetic demultiplexing of pooled single-cell RNA-sequencing samples in cancer facilitates effective experimental design.

  • Lukas M Weber‎ et al.
  • GigaScience‎
  • 2021‎

Pooling cells from multiple biological samples prior to library preparation within the same single-cell RNA sequencing experiment provides several advantages, including lower library preparation costs and reduced unwanted technological variation, such as batch effects. Computational demultiplexing tools based on natural genetic variation between individuals provide a simple approach to demultiplex samples, which does not require complex additional experimental procedures. However, to our knowledge these tools have not been evaluated in cancer, where somatic variants, which could differ between cells from the same sample, may obscure the signal in natural genetic variation.


Characterization of HCI-EC-23 a novel estrogen- and progesterone-responsive endometrial cancer cell line.

  • Craig M Rush‎ et al.
  • Scientific reports‎
  • 2022‎

Most endometrial cancers express the hormone receptor estrogen receptor alpha (ER) and are driven by excess estrogen signaling. However, evaluation of the estrogen response in endometrial cancer cells has been limited by the availability of hormonally responsive in vitro models, with one cell line, Ishikawa, being used in most studies. Here, we describe a novel, adherent endometrioid endometrial cancer (EEC) cell line model, HCI-EC-23. We show that HCI-EC-23 retains ER expression and that ER functionally responds to estrogen induction over a range of passages. We also demonstrate that this cell line retains paradoxical activation of ER by tamoxifen, which is also observed in Ishikawa and is consistent with clinical data. The mutational landscape shows that HCI-EC-23 is mutated at many of the commonly altered genes in EEC, has relatively few copy-number alterations, and is microsatellite instable high (MSI-high). In vitro proliferation of HCI-EC-23 is strongly reduced upon combination estrogen and progesterone treatment. HCI-EC-23 exhibits strong estrogen dependence for tumor growth in vivo and tumor size is reduced by combination estrogen and progesterone treatment. Molecular characterization of estrogen induction in HCI-EC-23 revealed hundreds of estrogen-responsive genes that significantly overlapped with those regulated in Ishikawa. Analysis of ER genome binding identified similar patterns in HCI-EC-23 and Ishikawa, although ER exhibited more bound sites in Ishikawa. This study demonstrates that HCI-EC-23 is an estrogen- and progesterone-responsive cell line model that can be used to study the hormonal aspects of endometrial cancer.


Oct1 cooperates with the Smad family of transcription factors to promote mesodermal lineage specification.

  • Jelena Perovanovic‎ et al.
  • Science signaling‎
  • 2023‎

The transition between pluripotent and tissue-specific states is a key aspect of development. Understanding the pathways driving these transitions will facilitate the engineering of properly differentiated cells for experimental and therapeutic uses. Here, we showed that during mesoderm differentiation, the transcription factor Oct1 activated developmental lineage-appropriate genes that were silent in pluripotent cells. Using mouse embryonic stem cells (ESCs) with an inducible knockout of Oct1, we showed that Oct1 deficiency resulted in poor induction of mesoderm-specific genes, leading to impaired mesodermal and terminal muscle differentiation. Oct1-deficient cells exhibited poor temporal coordination of the induction of lineage-specific genes and showed inappropriate developmental lineage branching, resulting in poorly differentiated cell states retaining epithelial characteristics. In ESCs, Oct1 localized with the pluripotency factor Oct4 at mesoderm-associated genes and remained bound to those loci during differentiation after the dissociation of Oct4. Binding events for Oct1 overlapped with those for the histone lysine demethylase Utx, and an interaction between Oct1 and Utx suggested that these two proteins cooperate to activate gene expression. The specificity of the ubiquitous Oct1 for the induction of mesodermal genes could be partially explained by the frequent coexistence of Smad and Oct binding sites at mesoderm-specific genes and the cooperative stimulation of mesodermal gene transcription by Oct1 and Smad3. Together, these results identify Oct1 as a key mediator of mesoderm lineage-specific gene induction.


Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin.

  • Ali Karadeniz‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2011‎

Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ) against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7 mg kg(-1) body weight i.p., single dose); group RJ: treated for 15 consecutive days by gavage with RJ (300 mg/kg/day); group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA), elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity.


From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

  • Georgi K Marinov‎ et al.
  • Genome research‎
  • 2014‎

Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.


The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment.

  • Gurkan Mollaoglu‎ et al.
  • Immunity‎
  • 2018‎

The major types of non-small-cell lung cancer (NSCLC)-squamous cell carcinoma and adenocarcinoma-have distinct immune microenvironments. We developed a genetic model of squamous NSCLC on the basis of overexpression of the transcription factor Sox2, which specifies lung basal cell fate, and loss of the tumor suppressor Lkb1 (SL mice). SL tumors recapitulated gene-expression and immune-infiltrate features of human squamous NSCLC; such features included enrichment of tumor-associated neutrophils (TANs) and decreased expression of NKX2-1, a transcriptional regulator that specifies alveolar cell fate. In Kras-driven adenocarcinomas, mis-expression of Sox2 or loss of Nkx2-1 led to TAN recruitment. TAN recruitment involved SOX2-mediated production of the chemokine CXCL5. Deletion of Nkx2-1 in SL mice (SNL) revealed that NKX2-1 suppresses SOX2-driven squamous tumorigenesis by repressing adeno-to-squamous transdifferentiation. Depletion of TANs in SNL mice reduced squamous tumors, suggesting that TANs foster squamous cell fate. Thus, lineage-defining transcription factors determine the tumor immune microenvironment, which in turn might impact the nature of the tumor.


Hepatoprotective effect of 17β-estradiol as antioxidant modulators against stress damage.

  • Serpil Can‎ et al.
  • Hepatitis monthly‎
  • 2015‎

Liver is one of the most important organs affected by exercise. According to the literature a few study to date has investigated the effects of estrogen supplementation on exercise-induced oxidative stress in liver tissue of rats.


GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer.

  • Mark Masin‎ et al.
  • Cancer & metabolism‎
  • 2014‎

Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: