Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

A high resolution case study of a patient with recurrent Plasmodium vivax infections shows that relapses were caused by meiotic siblings.

  • Andrew Taylor Bright‎ et al.
  • PLoS neglected tropical diseases‎
  • 2014‎

Plasmodium vivax infects a hundred million people annually and endangers 40% of the world's population. Unlike Plasmodium falciparum, P. vivax parasites can persist as a dormant stage in the liver, known as the hypnozoite, and these dormant forms can cause malaria relapses months or years after the initial mosquito bite. Here we analyze whole genome sequencing data from parasites in the blood of a patient who experienced consecutive P. vivax relapses over 33 months in a non-endemic country. By analyzing patterns of identity, read coverage, and the presence or absence of minor alleles in the initial polyclonal and subsequent monoclonal infections, we show that the parasites in the three infections are likely meiotic siblings. We infer that these siblings are descended from a single tetrad-like form that developed in the infecting mosquito midgut shortly after fertilization. In this natural cross we find the recombination rate for P. vivax to be 10 kb per centimorgan and we further observe areas of disequilibrium surrounding major drug resistance genes. Our data provide new strategies for studying multiclonal infections, which are common in all types of infectious diseases, and for distinguishing P. vivax relapses from reinfections in malaria endemic regions. This work provides a theoretical foundation for studies that aim to determine if new or existing drugs can provide a radical cure of P. vivax malaria.


A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito.

  • Scott J Westenberger‎ et al.
  • PLoS neglected tropical diseases‎
  • 2010‎

Up to 40% of the world's population is at risk for Plasmodium vivax malaria, a disease that imposes a major public health and economic burden on endemic countries. Because P. vivax produces latent liver forms, eradication of P. vivax malaria is more challenging than it is for P. falciparum. Genetic analysis of P. vivax is exceptionally difficult due to limitations of in vitro culture. To overcome the barriers to traditional molecular biology in P. vivax, we examined parasite transcriptional changes in samples from infected patients and mosquitoes in order to characterize gene function, define regulatory sequences and reveal new potential vaccine candidate genes.


Comparative analysis of field-isolate and monkey-adapted Plasmodium vivax genomes.

  • Ernest R Chan‎ et al.
  • PLoS neglected tropical diseases‎
  • 2015‎

Significant insights into the biology of Plasmodium vivax have been gained from the ability to successfully adapt human infections to non-human primates. P. vivax strains grown in monkeys serve as a renewable source of parasites for in vitro and ex vivo experimental studies and functional assays, or for studying in vivo the relapse characteristics, mosquito species compatibilities, drug susceptibility profiles or immune responses towards potential vaccine candidates. Despite the importance of these studies, little is known as to how adaptation to a different host species may influence the genome of P. vivax. In addition, it is unclear whether these monkey-adapted strains consist of a single clonal population of parasites or if they retain the multiclonal complexity commonly observed in field isolates. Here we compare the genome sequences of seven P. vivax strains adapted to New World monkeys with those of six human clinical isolates collected directly in the field. We show that the adaptation of P. vivax parasites to monkey hosts, and their subsequent propagation, did not result in significant modifications of their genome sequence and that these monkey-adapted strains recapitulate the genomic diversity of field isolates. Our analyses also reveal that these strains are not always genetically homogeneous and should be analyzed cautiously. Overall, our study provides a framework to better leverage this important research material and fully utilize this resource for improving our understanding of P. vivax biology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: