Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Epidemiology of Plasmodium vivax Malaria Infection in Nepal.

  • Komal Raj Rijal‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2018‎

Malaria is endemic in the southern plain of Nepal which shares a porous border with India. More than 80% cases of malaria in Nepal are caused by Plasmodium vivax. The main objective of this study was to review the epidemiology of P. vivax malaria infections as recorded by the national malaria control program of Nepal between 1963 and 2016. National malaria data were retrieved from the National Malaria program in the Ministry of Health, Government of Nepal. The epidemiological trends and malariometric indicators were analyzed. Vivax malaria has predominated over falciparum malaria in the past 53 years, with P. vivax malaria comprising 70-95% of the annual malaria infections. In 1985, a malaria epidemic occurred with 42,321 cases (82% P. vivax and 17% Plasmodium falciparum). Nepal had experienced further outbreaks of malaria in 1991 and 2002. Plasmodium falciparum cases increased from 2005 to 2010 but since then declined. Analyzing the overall trend between 2002 (12,786 cases) until 2016 (1,009 cases) shows a case reduction by 92%. The proportion of imported malaria cases has increased from 18% of cases in 2001 to 50% in 2016. The current trends of malariometric indices indicate that Nepal is making a significant progress toward achieving the goal of malaria elimination by 2025. Most of the cases are caused by P. vivax with imported malaria comprising an increasing proportion of cases. The malaria control program in Nepal needs to counter importation of malaria at high risk areas with collaborative cross border malaria control activities.


Epidemiological Characteristics, Ventilator Management, and Clinical Outcome in Patients Receiving Invasive Ventilation in Intensive Care Units from 10 Asian Middle-Income Countries (PRoVENT-iMiC): An International, Multicenter, Prospective Study.

  • Luigi Pisani‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2021‎

Epidemiology, ventilator management, and outcome in patients receiving invasive ventilation in intensive care units (ICUs) in middle-income countries are largely unknown. PRactice of VENTilation in Middle-income Countries is an international multicenter 4-week observational study of invasively ventilated adult patients in 54 ICUs from 10 Asian countries conducted in 2017/18. Study outcomes included major ventilator settings (including tidal volume [V T ] and positive end-expiratory pressure [PEEP]); the proportion of patients at risk for acute respiratory distress syndrome (ARDS), according to the lung injury prediction score (LIPS), or with ARDS; the incidence of pulmonary complications; and ICU mortality. In 1,315 patients included, median V T was similar in patients with LIPS < 4 and patients with LIPS ≥ 4, but lower in patients with ARDS (7.90 [6.8-8.9], 8.0 [6.8-9.2], and 7.0 [5.8-8.4] mL/kg Predicted body weight; P = 0.0001). Median PEEP was similar in patients with LIPS < 4 and LIPS ≥ 4, but higher in patients with ARDS (five [5-7], five [5-8], and 10 [5-12] cmH2O; P < 0.0001). The proportions of patients with LIPS ≥ 4 or with ARDS were 68% (95% CI: 66-71) and 7% (95% CI: 6-8), respectively. Pulmonary complications increased stepwise from patients with LIPS < 4 to patients with LIPS ≥ 4 and patients with ARDS (19%, 21%, and 38% respectively; P = 0.0002), with a similar trend in ICU mortality (17%, 34%, and 45% respectively; P < 0.0001). The capacity of the LIPS to predict development of ARDS was poor (receiver operating characteristic [ROC] area under the curve [AUC] of 0.62, 95% CI: 0.54-0.70). In Asian middle-income countries, where two-thirds of ventilated patients are at risk for ARDS according to the LIPS and pulmonary complications are frequent, setting of V T is globally in line with current recommendations.


No evidence for spread of Plasmodium falciparum artemisinin resistance to Savannakhet Province, Southern Laos.

  • Mayfong Mayxay‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2012‎

We conducted an open-label, randomized clinical trial to assess parasite clearance times (PCT) and the efficacy of 4 mg/kg (group 1, n = 22) and 2 mg/kg (group 2, n = 22) of oral artesunate for three days followed by artemether-lumefantrine in patients with uncomplicated Plasmodium falciparum malaria at Xepon Interdistrict Hospital, Savannakhet Province in southern Laos. Slides were read in duplicate. The overall mean (95% confidence interval; range) PCT in hours was 23.2 (21.2-25.3; 12-46) and 22.4 (20.3-24.5; 12-46) for the first and second microscopists, respectively (P = 0.57). Ten (23%) patients remained parasitemic on day 1 after treatment (4 [18%] in group 1 and 6 [27%] in group 2; P = 0.47). No patient had patent asexual parasitemia on the second and third days of treatment. The 42-day polymerase chain reaction-corrected cure rates were 100% in both treatment groups. Serious adverse events did not develop during or after treatment in any patients. In conclusion, no evidence of P. falciparum in vivo resistance to artesunate was found in southern Laos.


Estimating the Proportion of Plasmodium vivax Recurrences Caused by Relapse: A Systematic Review and Meta-Analysis.

  • Robert J Commons‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2020‎

Plasmodium vivax and Plasmodium ovale form dormant liver hypnozoites that can reactivate weeks to months following initial infection. Malaria recurrences caused by relapses are an important cause of morbidity and source of transmission. To estimate the proportions of P. vivax malaria recurrences caused by relapses in different geographical locations, we systematically reviewed clinical efficacy studies of uncomplicated P. vivax malaria, in which patients were randomized to treatment with or without radical cure primaquine regimens and were followed up for 1 year. The minimum proportion of recurrences caused by relapses was estimated for each study site by assuming primaquine prevented all relapses and did not augment blood-stage efficacy. Of the 261 studies identified, six were eligible enrolling 4,092 patients from 14 treatment arm comparisons across seven countries. Of the 2,735 patients treated with primaquine, 24.3% received low dose (2.5 to < 5.0 mg/kg total) and 75.7% received high-dose primaquine (≥ 5.0 mg/kg total). The overall pooled incidence rate ratio of P. vivax relapses for patients treated with primaquine versus no primaquine was 0.15 (95% CI: 0.10-0.21; I 2 = 83.3%), equating to a minimum of 79% of recurrences attributable to relapse. Country-specific incidence rate ratios ranged from 0.05 (95% CI: 0.01-0.34; one estimate) in Pakistan to 0.34 in Nepal (95% CI: 0.12-0.83; one estimate) and Afghanistan (95% CI: 0.22-0.51; three estimates). Relapses account for a very high proportion of recurrent infections following schizontocidal treatment of acute P. vivax malaria across diverse geographic locations. This emphasizes the importance of implementing hypnozoitocidal treatment.


Chloroquine-Primaquine versus Chloroquine Alone to Treat Vivax Malaria in Afghanistan: An Open Randomized Superiority Trial.

  • Ghulam Rahim Awab‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2017‎

Afghanistan's national guidelines recommend primaquine (PQ) for radical treatment of Plasmodium vivax malaria, but this is rarely implemented because of concerns over potential hemolysis in patients who have G6PD deficiency. Between August 2009 and February 2014, we conducted an open-label, randomized controlled trial of chloroquine (CQ) alone versus chloroquine plus primaquine (0.25 mg base/kg/day for 14 days) (CQ+PQ) in patients aged 6 months and older with microscopy confirmed P. vivax infection. In the CQ+PQ group, G6PD deficiency was excluded by fluorescent spot testing. The primary outcome was P. vivax recurrence assessed by survival analysis over one year follow-up. Of 593 patients enrolled, 570 attended at or after 14 days of follow-up. Plasmodium vivax recurrences occurred in 37 (13.1%) of 282 patients in the CQ+PQ arm versus 86 (29.9%) of 288 in the CQ arm (Cox proportional hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.25-0.54) (intention-to-treat analysis). Protection against recurrence was greater in the first 6 months of follow-up (HR 0.082; 95% CI 0.029-0.23) than later (HR 0.65, 95% CI 0.41-1.03). Five of seven patients requiring hospital admission were considered possible cases of PQ-related hemolysis, and PQ was stopped in a further six; however, in none of these cases did hemoglobin fall by ≥ 2 g/dL or to below 7 g/dL, and genotyping did not detect any cases of Mediterranean variant G6PD deficiency. PQ 0.25 mg/kg/day for 14 days prevents relapse of P. vivax in Afghanistan. Patient visits during the first week may improve adherence. Implementation will require deployment of point-of-care phenotypic tests for G6PD deficiency.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: