Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection.

  • Derseree Archary‎ et al.
  • Virology‎
  • 2012‎

Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers of study exit plasma against study entry viruses were significantly higher than contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb breadth and potencies against subtype C viruses were significantly higher than for subtype A (p=0.03 and p=0.01) or B viruses (p=0.03; p=0.05) respectively. Gp41-IgG binding affinity was higher than gp120-IgG (p=0.0002). IgG-FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression.


The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4(+) cells.

  • Kabamba B Alexandre‎ et al.
  • Virology‎
  • 2012‎

It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit HIV-1 infection by binding to mannose-rich glycans on gp120. We measured the ability of these lectins to inhibit both the HIV-1 binding to DC-SIGN and the DC-SIGN-mediated HIV-1 infection of CD4(+) cells. While GRFT, CV-N and SVN were moderately inhibitory to DC-SIGN binding, they potently inhibited DC-SIGN-transfer of HIV-1. The introduction of the 234 glycosylation site abolished HIV-1 sensitivity to lectin inhibition of binding to DC-SIGN and virus transfer to susceptible cells. However, the addition of the 295 glycosylation site increased the inhibition of transfer. Our data suggest that GRFT, CV-N and SVN can block two important stages of the sexual transmission of HIV-1, DC-SIGN binding and transfer, supporting their further development as microbicides.


Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin.

  • Kabamba B Alexandre‎ et al.
  • Virology‎
  • 2010‎

Griffithsin (GRFT), Cyanovirin-N (CV-N) and Scytovirin (SVN) are lectins that inhibit HIV-1 infection by binding to multiple mannose-rich glycans on the HIV-1 envelope glycoproteins (Env). Here we show that these lectins neutralize subtype C primary virus isolates in addition to Env-pseudotyped viruses obtained from plasma and cervical vaginal lavages. Among 15 subtype C pseudoviruses, the median IC(50) values were 0.4, 1.8 and 20.1nM for GRFT, CV-N and SVN, respectively, similar to what was found for subtype B and A. Analysis of Env sequences suggested that concomitant lack of glycans at positions 234 and 295 resulted in natural resistance to these compounds, which was confirmed by site-directed mutagenesis. Furthermore, the binding sites for these lectins overlapped that of the 2G12 monoclonal antibody epitope, which is generally absent on subtype C Env. This data support further research on these lectins as potential microbicides in the context of HIV-1 subtype C infection.


Genetic characteristics of HIV-1 subtype C envelopes inducing cross-neutralizing antibodies.

  • Cecilia Rademeyer‎ et al.
  • Virology‎
  • 2007‎

This study aimed to characterize genetic features of HIV-1 subtype C envelope glycoproteins capable of eliciting cross-reactive neutralizing antibodies during natural infections. The gp160 sequences were determined for 36 HIV-1 subtype C isolates (donor viruses) from infected individuals residing in Malawi, Zimbabwe, Zambia and South Africa, whose sera displayed a range of cross-neutralizing activities against a panel of 5 subtype C and 5 subtype B viruses (panel viruses). Hierarchical clustering analysis of neutralization data of the panel viruses predicted phylogenetic relationships between subtype B and C panel viruses, suggesting some subtype-specific neutralization determinants. A similar comparison of subtype C donor viruses showed no significant correlation; however of three donor sequence pairs resolvable by phylogenetic analysis, two were also associated within the neutralization clustering dendrogram, suggesting that closely related viruses may elicit antibodies targeting common neutralization determinants. Significantly, viruses that had shorter V1-V4 loops induced antibodies that showed more neutralization breadth against the subtype C panel viruses (p=0.0135). This study indicates that that some structural features of envelope, such as shorter variable loops, may facilitate the elicitation of cross-reactive neutralizing antibodies in natural infections. Collectively these data provide some insights into design features of an envelope immunogen aimed at inducing neutralizing antibodies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: