Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Is Gastroparesis Found More Frequently in Patients with Cystic Fibrosis? A Systematic Review.

  • Juan E Corral‎ et al.
  • Scientifica‎
  • 2016‎

Cystic fibrosis (CF) is associated with different gastrointestinal motility disturbances and syndromes. We aim to assess gastric emptying in patients with CF compared to healthy controls by a systematic review of existing literature. Medical databases and abstracts from major gastroenterology and CF meetings were reviewed. Emptying times in CF patients were compared with healthy controls using random effects models. Subgroup analysis stratified results by age and diagnostic modality. Nineteen studies from 7 countries included 574 subjects (359 CF patients and 215 controls). Using pooled analysis frequency of gastroparesis was high (38%, 95% CI 30-45%) but results were highly dependent on the diagnostic modality. Delayed gastric emptying is more common in CF compared to general population. Scintigraphy identified rapid gastric emptying in a subgroup of CF patients, but this finding disappeared with adequate pancreatic enzyme replacement and after other diagnostic modalities were included.


Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways.

  • Andreas Schmid‎ et al.
  • FEBS letters‎
  • 2017‎

Wnt signaling is essential for the differentiation of airway epithelial cells during development. Here, we examined the role of Wnt signaling during redifferentiation of ciliated airway epithelial cells in vitro at the air liquid interface as a model of airway epithelial repair. Phases of proliferation and differentiation were defined. Markers of squamous metaplasia and epithelial ciliation were followed while enhancing β-catenin signaling by blocking glycogen synthase kinase 3β with SB216763 and shRNA as well as inhibiting canonical WNT signaling with apical application of Dickkopf 1 (Dkk1). Our findings indicate that enhanced β-catenin signaling decreases the number of ciliated cells and causes squamous changes in the epithelium, whereas treatment with DDk1 leads to an increased number of ciliated cells.


A long noncoding RNA antisense to ICAM-1 is involved in allergic asthma associated hyperreactive response of airway epithelial cells.

  • Dinesh Devadoss‎ et al.
  • Mucosal immunology‎
  • 2021‎

Epithelial cells of the conducting airways are a pivotal first line of defense against airborne pathogens and allergens that orchestrate inflammatory responses and mucociliary clearance. Nonetheless, the molecular mechanisms responsible for epithelial hyperreactivity associated with allergic asthma are not completely understood. Transcriptomic analysis of human airway epithelial cells (HAECs), differentiated in-vitro at air-liquid interface (ALI), showed 725 differentially expressed immediate-early transcripts, including putative long noncoding RNAs (lncRNAs). A novel lncRNA on the antisense strand of ICAM-1 or LASI was identified, which was induced in LPS-primed HAECs along with mucin MUC5AC and its transcriptional regulator SPDEF. LPS-primed expression of LASI, MUC5AC, and SPDEF transcripts were higher in ex-vivo cultured asthmatic HAECs that were further augmented by LPS treatment. Airway sections from asthmatics with increased mucus load showed higher LASI expression in MUC5AC+ goblet cells following multi-fluorescent in-situ hybridization and immunostaining. LPS- or IL-13-induced LASI transcripts were mostly enriched in the nuclear/perinuclear region and were associated with increased ICAM-1, IL-6, and CXCL-8 expression. Blocking LASI expression reduced the LPS or IL-13-induced epithelial inflammatory factors and MUC5AC expression, suggesting that the novel lncRNA LASI could play a key role in LPS-primed trained airway epithelial responses that are dysregulated in allergic asthma.


An Open Label Trial to Assess Safety of Losartan for Treating Worsening Respiratory Illness in COVID-19.

  • Charles D Bengtson‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Rationale: Coronavirus disease 2019 (COVID-19) can cause disruption of the renin-angiotensin system in the lungs, possibly contributing to pulmonary capillary leakage. Thus, angiotensin receptor blockers (ARBs) may improve respiratory failure. Objective: Assess safety of losartan for use in respiratory failure related to COVID-19 (NCT04335123). Methods: Single arm, open label trial of losartan in those hospitalized with respiratory failure related to COVID-19. Oral losartan (25 mg daily for 3 days, then 50 mg) was administered from enrollment until day 14 or hospital discharge. A post-hoc external control group with patients who met all inclusion criteria was matched 1:1 to the treatment group using propensity scores for comparison. Measures: Primary outcome was cumulative incidence of any adverse events. Secondary, explorative endpoints included measures of respiratory failure, length of stay and vital status. Results: Of the 34 participants enrolled in the trial, 30 completed the study with a mean age SD of 53.8 ± 17.7 years and 17 males (57%). On losartan, 24/30 (80%) experienced an adverse event as opposed to 29/30 (97%) of controls, with a lower average number of adverse events on losartan relative to control (2.2 vs. 3.3). Using Poisson regression and controlling for age, sex, race, date of enrollment, disease severity at enrollment, and history of high-risk comorbidities, the incidence rate ratio of adverse events on losartan relative to control was 0.69 (95% CI: 0.49-0.97) Conclusions: Losartan appeared safe for COVID-19-related acute respiratory compromise. To assess true efficacy, randomized trials are needed.


Activity of the growth hormone-releasing hormone antagonist MIA602 and its underlying mechanisms of action in sarcoidosis-like granuloma.

  • Chongxu Zhang‎ et al.
  • Clinical & translational immunology‎
  • 2021‎

Growth hormone-releasing hormone (GHRH) is a potent stimulator of growth hormone (GH) secretion from the pituitary gland. Although GHRH is essential for the growth of immune cells, the regulatory effects of its antagonist in granulomatous disease remain unknown.


LRP1 loss in airway epithelium exacerbates smoke-induced oxidative damage and airway remodeling.

  • Itsaso Garcia-Arcos‎ et al.
  • Journal of lipid research‎
  • 2022‎

The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.


SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice.

  • Yousef M Alhammad‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.


Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection.

  • Justin Poon‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2019‎

Background: Viral infections are considered a major driving factor of chronic obstructive pulmonary disease (COPD) exacerbations and thus contribute to disease morbidity and mortality. Respiratory syncytial virus (RSV) is a frequently detected pathogen in the respiratory tract of COPD patients during an exacerbation. We previously demonstrated in a murine model that leukemia inhibitory factor (LIF) expression was increased in the lungs during RSV infection. Subduing LIF signaling in this model enhanced lung injury and airway hypersensitivity. In this study, we investigated lung LIF levels in COPD patient samples to determine the impact of disease status and cigarette smoke exposure on LIF expression. Materials and methods: Bronchoalveolar lavage fluid (BALF) was obtained from healthy never smokers, smokers, and COPD patients, by written informed consent. Human bronchial epithelial (HBE) cells were isolated from healthy never smokers and COPD patients, grown at the air-liquid interface and infected with RSV or stimulated with polyinosinic:polycytidylic acid (poly (i:c)). Mice were exposed to cigarette smoke daily for 6 months and were subsequently infected with RSV. LIF expression was profiled in all samples. Results: In human BALF, LIF protein was significantly reduced in both smokers and COPD patients compared to healthy never smokers. HBE cells isolated from COPD patients produced less LIF compared to never smokers during RSV infection or poly (i:c) stimulation. Animals exposed to cigarette smoke had reduced lung levels of LIF and its corresponding receptor, LIFR. Smoke-exposed animals had reduced LIF expression during RSV infection. Two possible factors for reduced LIF levels were increased LIF mRNA instability in COPD epithelia and proteolytic degradation of LIF protein by serine proteases. Conclusions: Cigarette smoke is an important modulator for LIF expression in the lungs. Loss of LIF expression in COPD could contribute to a higher degree of lung injury during virus-associated exacerbations.


Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli.

  • Monica Valencia Gattas‎ et al.
  • Free radical biology & medicine‎
  • 2009‎

Epithelia express oxidative antimicrobial protection that uses lactoperoxidase (LPO), hydrogen peroxide (H(2)O(2)), and thiocyanate to generate the reactive hypothiocyanite. Duox1 and Duox2, found in epithelia, are hypothesized to provide H(2)O(2) for use by LPO. To investigate the regulation of oxidative LPO-mediated host defense by bacterial and inflammatory stimuli, LPO and Duox mRNA were followed in differentiated primary human airway epithelial cells challenged with Pseudomonas aeruginosa flagellin or IFN-gamma. Flagellin upregulated Duox2 mRNA 20-fold, but upregulated LPO mRNA only 2.5-fold. IFN-gamma increased Duox2 mRNA 127-fold and upregulated LPO mRNA 10-fold. DuoxA2, needed for Duox2 activity, was also upregulated by flagellin and IFN-gamma. Both stimuli increased H(2)O(2) synthesis and LPO-dependent killing of P. aeruginosa. Reduction of Duox1 by siRNA showed little effect on basal H(2)O(2) production, whereas Duox2 siRNA markedly reduced basal H(2)O(2) production and resulted in an 8-fold increase in Nox4 mRNA. In conclusion, large increases in Duox2-mediated H(2)O(2) production seem to be coordinated with increases in LPO mRNA and, without increased LPO, H(2)O(2) levels in airway secretion are expected to increase substantially. The data suggest that Duox2 is the major contributor to basal H(2)O(2) synthesis despite the presence of greater amounts of Duox1.


The Effects of the Anti-aging Protein Klotho on Mucociliary Clearance.

  • Jaleesa Garth‎ et al.
  • Frontiers in medicine‎
  • 2019‎

α-klotho (KL) is an anti-aging protein and has been shown to exert anti-inflammatory and anti-oxidative effects in the lung and pulmonary diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. The current study investigated the direct effect of KL on the bronchial epithelium in regards to mucociliary clearance parameters. Primary human bronchial and murine tracheal epithelial cells, cultured, and differentiated at the air liquid interface (ALI), were treated with recombinant KL or infected with a lentiviral vector expressing KL. Airway surface liquid (ASL) volume, airway ion channel activities, and expression levels were analyzed. These experiments were paired with ex vivo analyses of mucociliary clearance in murine tracheas from klotho deficient mice and their wild type littermates. Our results showed that klotho deficiency led to impaired mucociliary clearance with a reduction in ASL volume in vitro and ex vivo. Overexpression or exogenous KL increased ASL volume, which was paralleled by increased activation of the large-conductance, Ca2+-activated, voltage-dependent potassium channel (BK) without effect on the cystic fibrosis transmembrane conductance regulator (CFTR). Furthermore, KL overexpression downregulated IL-8 levels and attenuated TGF-β-mediated downregulation of LRRC26, the γ subunit of BK, necessary for its function in non-excitable cells. In summary, we show that KL regulates mucociliary function by increasing ASL volume in the airways possibly due to underlying BK activation. The KL mediated BK channel activation may be a potentially important target to design therapeutic strategies in inflammatory airway diseases when ASL volume is decreased.


Regulation of human airway ciliary beat frequency by intracellular pH.

  • Zoltan Sutto‎ et al.
  • The Journal of physiology‎
  • 2004‎

pHi affects a number of cellular functions, but the influence of pHi on mammalian ciliary beat frequency (CBF) is not known. CBF and pHi of single human tracheobronchial epithelial cells in submerged culture were measured simultaneously using video microscopy (for CBF) and epifluorescence microscopy with the pH-sensitive dye BCECF. Baseline CBF and pHi values in bicarbonate-free medium were 7.2 +/- 0.2 Hz and 7.49 +/- 0.02, respectively (n = 63). Alkalization by ammonium pre-pulse to pHi 7.78 +/- 0.02 resulted in a 2.2 +/- 0.1 Hz CBF increase (P < 0.05). Following removal of NH4Cl, pHi decreased to 7.24 +/- 0.02 and CBF to 5.8 +/- 0.1 Hz (P < 0.05). Removal of extracellular CO2 to change pHi resulted in similar CBF changes. Pre-activation of cAMP-dependent protein kinase (10 microM forskolin), broad inhibition of protein kinases (100 microM H-7), inhibition of PKA (10 microM H-89), nor inhibition of phosphatases (10 microM cyclosporin + 1.5 microM okadaic acid) changed pHi-mediated changes in CBF, nor were they due to [Ca2+]i changes. CBF of basolaterally permeabilized human tracheobronchial cells, re-differentiated at the air-liquid interface, was 3.9 +/- 0.3, 5.7 +/- 0.4, 7.0 +/- 0.3 and 7.3 +/- 0.3 Hz at basolateral i.e., intracellular pH of 6.8, 7.2, 7.6 and 8.0, respectively (n = 18). Thus, intracellular alkalization stimulates, while intracellular acidification attenuates human airway CBF. Since phosphorylation and [Ca2+]i changes did not seem to mediate pHi-induced CBF changes, pHi may directly act on the ciliary motile machinery.


Role of Smad3 and p38 Signalling in Cigarette Smoke-induced CFTR and BK dysfunction in Primary Human Bronchial Airway Epithelial Cells.

  • Juliette Sailland‎ et al.
  • Scientific reports‎
  • 2017‎

Mucociliary clearance (MCC) is a major airway host defence system that is impaired in patients with smoking-associated chronic bronchitis. This dysfunction is partially related to a decrease of airway surface liquid (ASL) volume that is in part regulated by apically expressed cystic fibrosis transmembrane conductance regulator (CFTR) and large-conductance, Ca2+-activated, and voltage dependent K+ (BK) channels. Here, data from human bronchial epithelial cells (HBEC) confirm that cigarette smoke not only downregulates CFTR activity but also inhibits BK channel function, thereby causing ASL depletion. Inhibition of signalling pathways involved in cigarette smoke-induced channel dysfunction reveals that CFTR activity is downregulated via Smad3 signalling whereas BK activity is decreased via the p38 cascade. In addition, pre-treatment with pirfenidone, a drug presently used to inhibit TGF-β signalling in idiopathic pulmonary fibrosis, ameliorated BK dysfunction and ASL volume loss. Taken together, our results highlight the importance of not only CFTR but also BK channel function in maintaining ASL homeostasis and emphasize the possibility that pirfenidone could be employed as a novel therapeutic regimen to help improve MCC in smoking-related chronic bronchitis.


Klotho Inhibits Interleukin-8 Secretion from Cystic Fibrosis Airway Epithelia.

  • Stefanie Krick‎ et al.
  • Scientific reports‎
  • 2017‎

Chronic inflammation is a hallmark of cystic fibrosis (CF) and associated with increased production of transforming growth factor (TGF) β and interleukin (IL)-8. α-klotho (KL), a transmembrane or soluble protein, functions as a co-receptor for Fibroblast Growth Factor (FGF) 23, a known pro-inflammatory, prognostic marker in chronic kidney disease. KL is downregulated in airways from COPD patients. We hypothesized that both KL and FGF23 signaling modulate TGF β-induced IL-8 secretion in CF bronchial epithelia. Thus, FGF23 and soluble KL levels were measured in plasma from 48 CF patients and in primary CF bronchial epithelial cells (CF-HBEC). CF patients showed increased FGF23 plasma levels, but KL levels were not different. In CF-HBEC, TGF-β increased KL secretion and upregulated FGF receptor (FGFR) 1. Despite increases in KL, TGF-β also increased IL-8 secretion via activation of FGFR1 and Smad 3 signaling. However, KL excess via overexpression or supplementation decreased IL-8 secretion by inhibiting Smad 3 phosphorylation. Here, we identify a novel signaling pathway contributing to IL-8 secretion in the CF bronchial epithelium with KL functioning as an endocrine and local anti-inflammatory mediator that antagonizes pro-inflammatory actions of FGF23 and TGF-β.


Transport of Designed Ankyrin Repeat Proteins through reconstituted human bronchial epithelia and protection against SARS-CoV-2.

  • Lisa Künzi‎ et al.
  • Scientific reports‎
  • 2023‎

Clinical studies have proven antiviral effectiveness of treatment with a Designed Ankyrin Repeat Protein (DARPin) specific against the spike protein of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). More information on transport mechanisms and efficiency to the site of action is desirable. Transepithelial migration through air-liquid interface (ALI) cultures of reconstituted human bronchial epithelia (HBE) was assessed by Enzyme-Linked Immunosorbent Assays and Confocal Laser Scanning Microscopy for different DARPin designs in comparison to a monoclonal antibody. Antiviral efficacy against authentic SARS-CoV-2, applied apically on HBE, was investigated based on viral titers and genome equivalents, after administration of therapeutic candidates on the basal side. Transepithelial translocation of all DARPin candidates and the monoclonal antibody was efficient and dose dependent. Small DARPins and the antibody migrated more efficiently than larger molecules, indicating different transport mechanisms involved. Microscopic analyses support this, demonstrating passive paracellular transport of smaller DARPins and transcellular migration of the larger molecules. All therapeutic candidates applied to the basal side of HBE conferred effective protection against SARS-CoV-2 infection. In summary, we have shown that DARPins specific against SARS-CoV-2 translocate across intact airway epithelia and confer effective protection against infection and viral replication.


The combination of propylene glycol and vegetable glycerin e-cigarette aerosols induces airway inflammation and mucus hyperconcentration.

  • Michael D Kim‎ et al.
  • Scientific reports‎
  • 2024‎

Despite concerns over their safety, e-cigarettes (e-cigs) remain a popular tobacco product. Although nicotine and flavors found in e-cig liquids (e-liquids) can cause harm in the airways, whether the delivery vehicles propylene glycol (PG) and vegetable glycerin (VG) are innocuous when inhaled remains unclear. Here, we investigated the effects of e-cig aerosols generated from e-liquid containing only PG/VG on airway inflammation and mucociliary function in primary human bronchial epithelial cells (HBEC) and sheep. Primary HBEC were cultured at the air-liquid interface (ALI) and exposed to e-cig aerosols of 50%/50% v/v PG/VG. Ion channel conductance, ciliary beat frequency, and the expression of inflammatory markers, cell type-specific markers, and the major mucins MUC5AC and MUC5B were evaluated after seven days of exposure. Sheep were exposed to e-cig aerosols of PG/VG for five days and mucus concentration and matrix metalloproteinase-9 (MMP-9) activity were measured from airway secretions. Seven-day exposure of HBEC to e-cig aerosols of PG/VG caused a significant reduction in the activities of apical ion channels important for mucus hydration, including the cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. PG/VG aerosols significantly increased the mRNA expression of the inflammatory markers interleukin-6 (IL6), IL8, and MMP9, as well as MUC5AC. The increase in MUC5AC mRNA expression correlated with increased immunostaining of MUC5AC protein in PG/VG-exposed HBEC. On the other hand, PG/VG aerosols reduced MUC5B expression leading overall to higher MUC5AC/MUC5B ratios in exposed HBEC. Other cell type-specific markers, including forkhead box protein J1 (FOXJ1), keratin 5 (KRT5), and secretoglobin family 1A member 1 (SCGB1A1) mRNAs, as well as overall ciliation, were significantly reduced by PG/VG exposure. Finally, PG/VG aerosols increased MMP-9 activity and caused mucus hyperconcentration in sheep in vivo. E-cig aerosols of PG/VG induce airway inflammation, increase MUC5AC expression, and cause dysfunction of ion channels important for mucus hydration in HBEC in vitro. Furthermore, PG/VG aerosols increase MMP-9 activity and mucus concentration in sheep in vivo. Collectively, these data show that e-cig aerosols containing PG/VG are likely to be harmful in the airways.


Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

  • Lisa Künzi‎ et al.
  • Scientific reports‎
  • 2015‎

Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.


The Biological Effects of Double-Dose Alpha-1 Antitrypsin Augmentation Therapy. A Pilot Clinical Trial.

  • Michael A Campos‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2019‎

Rationale: Augmentation therapy with intravenous AAT (alpha-1 antitrypsin) is the only specific therapy for individuals with pulmonary disease from AAT deficiency (AATD). The recommended standard dose (SD; 60 mg/kg/wk) elevates AAT trough serum levels to around 50% of normal; however, outside of slowing emphysema progression, its effects in other clinical outcomes have not been rigorously proven.Objectives: To evaluate the biological effects of normalizing AAT trough levels with double-dose (DD) therapy (120 mg/kg/wk) in subjects with AATD already receiving SD therapy.Methods: Clinically stable subjects were evaluated after 4 weeks of SD therapy, followed by 4 weeks of DD therapy, and 4 weeks after return to SD therapy. At the end of each phase, BAL fluid (BALF) and plasma samples were obtained.Measurements and Main Results: DD therapy increased trough AAT levels to normal and, compared with SD therapy, reduced serine protease activity in BALF (elastase and cathepsin G), plasma elastase footprint (Aα-Val360), and markers of elastin degradation (desmosine/isodesmosine) in BALF. DD therapy also further downregulated BALF ILs and cytokines including Jak-STAT (Janus kinases-signal transducer and activator of transcription proteins), TNFα (tumor necrosis factor-α), and T-cell receptor signaling pathways, cytokines involved in macrophage migration, eosinophil recruitment, humoral and adaptive immunity, neutrophil activation, and cachexia. On restarting SD after DD treatment, a possible carryover effect was seen for several biological markers.Conclusions: Subjects with AATD on SD augmentation therapy still exhibit inflammation, protease activity, and elastin degradation that can be further improved by normalizing AAT levels. Higher AAT dosing than currently recommended may lead to enhanced clinical benefits and should be explored further.Clinical trial registered with www.clinicaltrials.gov (NCT01669421).


The SARS-CoV-2 Transcriptome and the Dynamics of the S Gene Furin Cleavage Site in Primary Human Airway Epithelia.

  • Wei Zou‎ et al.
  • mBio‎
  • 2021‎

The spike (S) polypeptide of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of the S1 and S2 subunits and is processed by cellular proteases at the S1/S2 boundary that contains a furin cleavage site (FCS), 682RRAR↓S686 Various deletions surrounding the FCS have been identified in patients. When SARS-CoV-2 propagated in Vero cells, it acquired deletions surrounding the FCS. We studied the viral transcriptome in Vero cell-derived SARS-CoV-2-infected primary human airway epithelia (HAE) cultured at an air-liquid interface (ALI) with an emphasis on the viral genome stability of the FCS. While we found overall the viral transcriptome is similar to that generated from infected Vero cells, we identified a high percentage of mutated viral genome and transcripts in HAE-ALI. Two highly frequent deletions were found at the FCS region: a 12 amino acid deletion (678TNSPRRAR↓SVAS689) that contains the underlined FCS and a 5 amino acid deletion (675QTQTN679) that is two amino acids upstream of the FCS. Further studies on the dynamics of the FCS deletions in apically released virions from 11 infected HAE-ALI cultures of both healthy and lung disease donors revealed that the selective pressure for the FCS maintains the FCS stably in 9 HAE-ALI cultures but with 2 exceptions, in which the FCS deletions are retained at a high rate of >40% after infection of ≥13 days. Our study presents evidence for the role of unique properties of human airway epithelia in the dynamics of the FCS region during infection of human airways, which is likely donor dependent.IMPORTANCE Polarized human airway epithelia at an air-liquid interface (HAE-ALI) are an in vitro model that supports efficient infection of SARS-CoV-2. The spike (S) protein of SARS-CoV-2 contains a furin cleavage site (FCS) at the boundary of the S1 and S2 domains which distinguishes it from SARS-CoV. However, FCS deletion mutants have been identified in patients and in vitro cell cultures, and how the airway epithelial cells maintain the unique FCS remains unknown. We found that HAE-ALI cultures were capable of suppressing two prevalent FCS deletion mutants (Δ678TNSPRRAR↓SVAS689 and Δ675QTQTN679) that were selected during propagation in Vero cells. While such suppression was observed in 9 out of 11 of the tested HAE-ALI cultures derived from independent donors, 2 exceptions that retained a high rate of FCS deletions were also found. Our results present evidence of the donor-dependent properties of human airway epithelia in the evolution of the FCS during infection.


Responses of reconstituted human bronchial epithelia from normal and health-compromised donors to non-volatile particulate matter emissions from an aircraft turbofan engine.

  • Mathilde N Delaval‎ et al.
  • Environmental pollution (Barking, Essex : 1987)‎
  • 2022‎

Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 109 particles cm-2 or 337.1 ng cm-2. Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.


Losartan reduces cigarette smoke-induced airway inflammation and mucus hypersecretion.

  • Michael D Kim‎ et al.
  • ERJ open research‎
  • 2021‎

The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: