Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

Soluble Serum αKlotho Is a Potential Predictive Marker of Disease Progression in Clear Cell Renal Cell Carcinoma.

  • Margherita Gigante‎ et al.
  • Medicine‎
  • 2015‎

Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies, and clear cell RCC (ccRCC), that has a high metastatic index and high relapse rate, is the most common histological subtype. The identification of new biomarkers in ccRCC is fundamental for stratifying patients into prognostic risk groups and to guide therapy. The renoprotective antiaging gene, αKlotho, has recently been found to work as a tumor suppressor in different human cancers. Here, we evaluated αKlotho expression in tissue and serum of ccRCC patients and correlated it with disease progression. Tissue αKlotho expression was studied by quantitative RT-PCR and immunohistochemistry. In addition, soluble serum αKlotho levels were preoperatively measured in 160 patients who underwent nephrectomy for RCC with ELISA. Estimates of cancer-specific (CSS) and progression-free survival (PFS) were calculated according to the Kaplan-Meier method. Multivariate analysis was performed to identify the most significant variables for predicting CSS and PFS. αKlotho protein levels were significantly decreased in RCC tissues compared with normal tissues (P < 0.01) and the more advanced the disease, the more evident the down-regulation. This trend was also observed in serum samples. Statistically significant differences resulted between serum αKlotho levels and tumor size (P = 0.003), Fuhrman grade (P = 0.007), and clinical stage (P = 0.0004). CSS and PFS were significantly shorter in patients with lower levels of αKlotho (P < 0.0001 and P = 0.0004, respectively). At multivariate analysis low serum levels of αKlotho were independent adverse prognostic factors for CSS (HR = 2.11; P = 0.03) and PFS (HR = 2.18; P = 0.03).These results indicate that a decreased αKlotho expression is correlated with RCC progression, and suggest a key role of declining αKlotho in the onset of cancer metastasis.


Rapamycin induces ILT3(high)ILT4(high) dendritic cells promoting a new immunoregulatory pathway.

  • Giovanni Stallone‎ et al.
  • Kidney international‎
  • 2014‎

ILT3(high)ILT4(high) dendritic cells (DCs) may cause anergy in CD4(+)CD45RO(+)CD25(+) T cells transforming them into regulatory T cells (Tregs). Here, we tested whether chronic exposure to rapamycin may modulate this immunoregulatory pathway in renal transplant recipients. Forty renal transplant patients with biopsy-proven chronic allograft nephropathy and receiving calcineurin inhibitors were randomly assigned to either calcineurin inhibitor dose reduction or withdrawal with rapamycin introduction. At conversion and 2 years thereafter, we measured the rapamycin effects on circulating DCs (BDCA1/BDCA2 and ILT3/ILT4 expression), CD4(+)/CD25(high)/Foxp3(+) Tregs, CD8(+)/CD28(-) T cells, and the Th1/Th2 balance in graft biopsies. In rapamycin-treated patients, peripheral BDCA2(+) cells were significantly increased along with ILT3/ILT4(+) DCs. The number of circulating CD4(+)/CD25(high)/Foxp3(+)/CTLA4(+) Tregs, CD8(+)CD28(-) T cells, and HLA-G serum levels were higher in the rapamycin-treated group. The number of ILT3/ILT4(+)BDCA2(+) DC was directly and significantly correlated with circulating Tregs and CD8(+)CD28(-) T cells. ILT3/ILT4 expression was increased in kidney biopsies at the end of the study period along with a significant bias toward a Th2 response within the graft only in the rapamycin-treated patients. Thus, rapamycin induces the upregulation of ILT3 and ILT4 on the DC surface, and this effect is associated with an increase in the number of Tregs and expansion of the CD8(+)CD28(-) T cell population. This suggests that mTOR inhibition may promote a novel immunoregulatory pathway.


TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma.

  • Mariano Francesco Caratozzolo‎ et al.
  • Oncotarget‎
  • 2014‎

In some tumours, despite a wild-type p53 gene, the p53 pathway is inactivated by alterations in its regulators or by unknown mechanisms, leading to resistance to cytotoxic therapies. Understanding the mechanisms of functional inactivation of wild-type p53 in these tumours may help to define prospective targets for treating cancer by restoring p53 activity. Recently, we identified TRIM8 as a new p53 modulator, which stabilizes p53 impairing its association with MDM2 and inducing the reduction of cell proliferation. In this paper we demonstrated that TRIM8 deficit dramatically impairs p53-mediated cellular responses to chemotherapeutic drugs and that TRIM8 is down regulated in patients affected by clear cell Renal Cell Carcinoma (ccRCC), an aggressive drug-resistant cancer showing wild-type p53. These results suggest that down regulation of TRIM8 might be an alternative way to suppress p53 activity in RCC. Interestingly, we show that TRIM8 expression recovery in RCC cell lines renders these cells sensitive to chemotherapeutic treatments following p53 pathway re-activation. These findings provide the first mechanistic link between TRIM8 and the drug resistance of ccRCC and suggest more generally that TRIM8 could be used as enhancer of the chemotherapy efficacy in cancers where p53 is wild-type and its pathway is defective.


HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma.

  • Luigia Rao‎ et al.
  • Cancers‎
  • 2020‎

Epidermal growth factor receptor (EGFR) and its ligand heparin-binding EGF-like growth factor (HB-EGF) sustain endothelial cell proliferation and angiogenesis in solid tumors, but little is known about the role of HB-EGF-EGFR signaling in bone marrow angiogenesis and multiple myeloma (MM) progression. We found that bone marrow endothelial cells from patients with MM express high levels of EGFR and HB-EGF, compared with cells from patients with monoclonal gammopathy of undetermined significance, and that overexpressed HB-EGF stimulates EGFR expression in an autocrine loop. We also found that levels of EGFR and HB-EGF parallel MM plasma cell number, and that HB-EGF is a potent inducer of angiogenesis in vitro and in vivo. Moreover, blockade of HB-EGF-EGFR signaling, by an anti-HB-EGF neutralizing antibody or the EGFR inhibitor erlotinib, limited the angiogenic potential of bone marrow endothelial cells and hampered tumor growth in an MM xenograft mouse model. These results identify HB-EGF-EGFR signaling as a potential target of anti-angiogenic therapy, and encourage the clinical investigation of EGFR inhibitors in combination with conventional cytotoxic drugs as a new therapeutic strategy for MM.


Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms.

  • Matteo Bulloni‎ et al.
  • Cancers‎
  • 2021‎

Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs.


Uridine and pyruvate protect T cells' proliferative capacity from mitochondrial toxic antibiotics: a clinical pilot study.

  • Stefano Battaglia‎ et al.
  • Scientific reports‎
  • 2021‎

Antibiotics that inhibit bacterial protein or nucleic acid synthesis and function can exert an off-target action on mitochondria (mitotoxic antibiotics), making actively dividing mammalian cells dependent on uridine and pyruvate supplementation. Based on this rationale, we carried out, for the first time, a randomized pilot study in 55 patients with asymptomatic bacteriuria or positive sperm culture, each treated with a single mitotoxic antibiotic with or without oral supplementation of uridine + pyruvate (Uripyr, Mitobiotix, Italy). The in vivo and ex vivo data show a a 3.4-fold higher value in the differential (before and after the antibiotic treatment) lymphocytes count and a 3.7-fold increase in the percentage of dividing T cells, respectively, in the Uripyr vs the control group. Our findings lay the groundwork to enhance the synergy between antibiotics and the immune system in order to optimize the administration protocols and widen the application potentials of antibiotic therapies as well as to re-evaluate old "forgotten" molecules to fight bacterial infections in the antibiotics resistance era.


Intracranial mesenchymal tumor with (novel) COX14::PTEN rearrangement.

  • Antonio d'Amati‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

Mesenchymal tumors of the central nervous system (CNS) include numerous entities, with different pathological features and biological behavior. Mesenchymal non-meningothelial tumors are rare and comprise neoplasms that are exclusive to the CNS or show peculiar features when occurring in the CNS compared with other sites. Within this group there are three new entities, classified on the basis of specific molecular alterations and included in the 5th edition of the WHO Classification of CNS Tumors: primary intracranial sarcoma; DICER1-mutant; CIC-rearranged sarcoma; intracranial mesenchymal tumor, FET::CREB fusion-positive. These tumors often show variable morphology, making diagnosis very challenging, although the implementation of molecular techniques has led to better characterization and more precise identification of these entities. However, many molecular alterations have yet to be discovered and some recently reported CNS tumors are currently missing an appropriate classification. Herein, we report the case of a 43-year-old man who presented with an intracranial mesenchymal tumor. Histopathological examination showed a wide spectrum of peculiar morphological features and a non-specific immunohistochemical profile. Whole transcriptome sequencing revealed the presence of a novel genetic rearrangement involving COX14 and PTEN genes, which has never been reported before in any other neoplasm. The tumor did not cluster in any defined methylation class of the brain tumor classifier, but resulted in a calibrated score of 0.89 for the methylation class "Sarcoma, MPNST-like", when analyzed by the sarcoma classifier. Our study is the first to report about this tumor with unique pathological and molecular features, characterized by a novel rearrangement between COX14 and PTEN genes. Other studies are necessary in order to define it as a new entity or as a novel rearrangement involving recently described and incompletely characterized CNS mesenchymal tumors.


Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.

  • Giuseppe Lucarelli‎ et al.
  • Oncotarget‎
  • 2015‎

The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target.


Two dimensional gel phosphoproteome of peripheral blood mononuclear cells: comparison between two enrichment methods.

  • Maria Teresa Rocchetti‎ et al.
  • Proteome science‎
  • 2014‎

Protein phosphorylation is considered a key event in signal transduction. Peripheral blood mononuclear cells (PBMCs) are a critical component of the immune system. The analysis of PBMCs phosphoproteome might help elucidate the signaling pathways essential to their biological role in health, immunological diseases and cancer. Enrichment of phosphoproteins becomes a prerequisite for phosphoproteome analysis and conventionally requires a multi-step procedure and sophisticated equipments. In this study, we standardized 2D-PAGE phosphoproteome analysis of PBMCs and compared two phosphoprotein enrichment methods, lanthanum chloride precipitation and affinity micro-column. Further, the different specificity for PBMCs phosphorylated proteins of each method was investigated.


Everolimus restrains the paracrine pro-osteoclast activity of breast cancer cells.

  • Valeria Simone‎ et al.
  • BMC cancer‎
  • 2015‎

Breast cancer (BC) cells secrete soluble factors that accelerate osteoclast (OC) differentiation, leading to the formation of osteolytic bone metastases. In the BOLERO-2 trial, BC patients with bone involvement who received Everolimus had a delayed tumor progression in the skeleton as a result of direct OC suppression through the inhibition of mTOR, in addition to the general suppressor effect on the cancer cells. Here, we explored the effect of Everolimus, as mTOR inhibitor, on the pro-OC paracrine activity of BC cells.


Increased Expression of the Autocrine Motility Factor is Associated With Poor Prognosis in Patients With Clear Cell-Renal Cell Carcinoma.

  • Giuseppe Lucarelli‎ et al.
  • Medicine‎
  • 2015‎

Glucose-6-phosphate isomerase (GPI), also known as phosphoglucose isomerase, was initially identified as the second glycolytic enzyme that catalyzes the interconversion of glucose-6-phosphate to fructose-6-phosphate. Later studies demonstrated that GPI was the same as the autocrine motility factor (AMF), and that it mediates its biological effects through the interaction with its surface receptor (AMFR/gp78). In this study, we assessed the role of GPI/AMF as a prognostic factor for clear cell renal cell carcinoma (ccRCC) cancer-specific (CSS) and progression-free survival (PFS). In addition, we evaluated the expression and localization of GPI/AMF and AMFR, using tissue microarray-based immunohistochemistry (TMA-IHC), indirect immunofluorescence (IF), and confocal microscopy analysis.Primary renal tumor and nonneoplastic tissues were collected from 180 patients who underwent nephrectomy for ccRCC. TMA-IHC and IF staining showed an increased signal for both GPI and AMFR in cancer cells, and their colocalization on plasma membrane. Kaplan-Meier curves showed significant differences in CSS and PFS among groups of patients with high versus low GPI expression. In particular, patients with high tissue levels of GPI had a 5-year survival rate of 58.8%, as compared to 92.1% for subjects with low levels (P < 0.0001). Similar findings were observed for PFS (56.8% vs 93.3% at 5 years). At multivariate analysis, GPI was an independent adverse prognostic factor for CSS (HR = 1.26; P = 0.001), and PFS (HR = 1.16; P = 0.01).In conclusion, our data suggest that GPI could serve as a marker of ccRCC aggressiveness and a prognostic factor for CSS and PFS.


The Three-Gene Signature in Urinary Extracellular Vesicles from Patients with Clear Cell Renal Cell Carcinoma.

  • Giuseppe De Palma‎ et al.
  • Journal of Cancer‎
  • 2016‎

Renal cell carcinoma (RCC) accounts for more than 2% of neoplasias in humans worldwide. Renal biopsy is the gold standard among the diagnostic procedures, but it is invasive and not suitable for all patients. Therefore, new reliable and non-invasive biomarkers for RCC are required. Secretion of extracellular vesicles (EVs), containing RNA molecules that can be transferred between cells, appears to be a common feature of neoplasia. Consistently, cancer-derived EVs are increased in blood and urine. Therefore, urinary samples may be a non-invasive approach for discovering new diagnostic biomarkers. We enrolled 46 patients of whom 33 with clear cell renal cell carcinoma (ccRCC) and 22 healthy subjects (HS). Urinary EVs were isolated by differential centrifugation. Microarray analysis led to the identification of RNA molecules that were validated using RT-qPCR. We found that urinary exosomal shuttle RNA (esRNA) pattern was significantly different in ccRCC patients compared to HS and to non-clear cell RCC (non-ccRCC) and we identified three esRNAs involved in the tumor biology that may be potentially suitable as non-invasive gene signature. GSTA1, CEBPA and PCBD1 esRNA levels were decreased in urine of patients compared with HS. This pattern was specific of the ccRCC and one month after partial or radical nephrectomy the esRNA levels increased to reach the normal level. This study suggests, for the first time, the potential use of the RNA content of urinary EVs to provide a non-invasive first step to diagnose the ccRCC.


Serum Levels of BAFF and APRIL Predict Clinical Response in Anti-PLA2R-Positive Primary Membranous Nephropathy.

  • Giuseppe Stefano Netti‎ et al.
  • Journal of immunology research‎
  • 2019‎

Primary membranous nephropathy (PMN) is a renal-specific autoimmune disease caused by circulating autoantibodies that target glomerular podocyte antigens (PLA2R/THSD7A). However, very little is known on the molecular mechanisms controlling B cell response in this nephropathy. The present study was aimed at correlating the serum levels of B cell activators BAFF/BLyS and APRIL with the presence of anti-PLA2R antibodies in PMN patients and with long-term clinical outcome. To this aim, 51 patients with anti-PLA2R-positive biopsy-proven PMN and nephrotic range proteinuria (>3.5 g/24 hours) were enrolled between January 2009 and December 2015 and treated with conventional 6-month immunosuppressive therapy. After 6 months, 29 patients (56.9%) cleared circulating anti-PLA2R, while in remaining 22 (43.1%), they persisted. Intriguingly, in the first group, baseline serum levels of BAFF/BLyS and APRIL were significantly lower than those in the second one. Moreover, after 6 months of immunosuppressive therapy, an overall reduction in both cytokine serum levels was observed. However, in PMN patients with anti-PLA2R clearance, this reduction was more prominent, as compared with those with anti-PLA2R persistence. When related to clinical outcome, lower baseline BAFF/BLyS (<6.05 ng/mL) and APRIL (<4.20 ng/mL) serum levels were associated with significantly higher probability to achieve complete or partial remission after 24-month follow-up. After dividing the entire study cohort into three groups depending on both cytokine baseline serum levels, patients with both BAFF/BLyS and APRIL below the cut-off showed a significantly higher rate of complete or partial remission as compared with patients with only one cytokine above the cut-off, while the composite endpoint was achieved in a very low rate of patients with both cytokines above the cut-off. Taken together, these results provide new insights into the role of BAFF/BLyS and APRIL in both the pathogenesis of anti-PLA2R-positive PMN and the response to immunosuppressive therapy.


Renal Cell Carcinoma: A Study through NMR-Based Metabolomics Combined with Transcriptomics.

  • Rosa Ragone‎ et al.
  • Diseases (Basel, Switzerland)‎
  • 2016‎

Renal cell carcinoma (RCC) is a heterogeneous cancer often showing late symptoms. Until now, some candidate protein markers have been proposed for its diagnosis. Metabolomics approaches have been applied, predominantly using Mass Spectrometry (MS), while Nuclear Magnetic Resonance (NMR)-based studies remain limited. There is no study about RCC integrating NMR-based metabolomics with transcriptomics. In this work, ¹H-NMR spectroscopy combined with multivariate statistics was applied on urine samples, collected from 40 patients with clear cell RCC (ccRCC) before nephrectomy and 29 healthy controls; nine out of 40 patients also provided samples one-month after nephrectomy. We observed increases of creatine, alanine, lactate and pyruvate, and decreases of hippurate, citrate, and betaine in all ccRCC patients. A network analysis connected most of these metabolites with glomerular injury, renal inflammation and renal necrosis/cell death. Interestingly, intersecting metabolites with transcriptomic data from CD133+/CD24+ tumoral renal stem cells isolated from ccRCC patients, we found that both genes and metabolites differentially regulated in ccRCC patients belonged to HIF-α signaling, methionine and choline degradation, and acetyl-CoA biosynthesis. Moreover, when comparing urinary metabolome of ccRCC patients after nephrectomy, some processes, such as the glomerular injury, renal hypertrophy, renal necrosis/cell death and renal proliferation, were no more represented.


mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients.

  • Giuseppe S Netti‎ et al.
  • American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons‎
  • 2022‎

Kidney transplant recipients (KTRs) have been considered as patients at higher risk of SARS-CoV-2-related disease severity, thus COVID-19 vaccination was highly recommended. However, possible interferences of different immunosuppression with development of both humoral and T cell-mediated immune response to COVID-19 vaccination have not been determined. Here we evaluated the association between mTOR-inhibitors (mTOR-I) and immune response to mRNA BNT162b2 (Pfizer-BioNTech) vaccine in KTR. To this aim 132 consecutive KTR vaccinated against COVID-19 in the early 2021 were enrolled, and humoral and T cell-mediated immune response were assessed after 4-5 weeks. Patients treated with mTOR-I showed significantly higher anti-SARS-CoV-2 IgG titer (p = .003) and higher percentages of anti-SARS-CoV-2 S1/RBD Ig (p = .024), than those without. Moreover, SARS-CoV-2-specific T cell-derived IFNγ release was significantly increased in patients treated with mTOR-I (p < .001), than in those without. Multivariate analysis confirmed that therapy with mTOR-I gained better humoral (p = .005) and T cell-mediated immune response (p = .005) in KTR. The presence of mTOR-I is associated with a better immune response to COVID-19 vaccine in KTR compared to therapy without mTOR-I, not only by increasing vaccine-induced antibodies but also by stimulating anti-SARS-CoV-2 T cell response. These finding are consistent with a potential beneficial role of mTOR-I as modulators of immune response to COVID-19 vaccine in KTR.


β3 adrenergic receptor as potential therapeutic target in ADPKD.

  • Giorgia Schena‎ et al.
  • Physiological reports‎
  • 2021‎

Autosomal dominant polycystic kidney disease (ADPKD) disrupts renal parenchyma through progressive expansion of fluid-filled cysts. The only approved pharmacotherapy for ADKPD involves the blockade of the vasopressin type 2 receptor (V2R). V2R is a GPCR expressed by a subset of renal tubular cells and whose activation stimulates cyclic AMP (cAMP) accumulation, which is a major driver of cyst growth. The β3-adrenergic receptor (β3-AR) is a GPCR expressed in most segments of the murine nephron, where it modulates cAMP production. Since sympathetic nerve activity, which leads to activation of the β3-AR, is elevated in patients affected by ADPKD, we hypothesize that β3-AR might constitute a novel therapeutic target. We find that administration of the selective β3-AR antagonist SR59230A to an ADPKD mouse model (Pkd1fl/fl ;Pax8rtTA ;TetO-Cre) decreases cAMP levels, producing a significant reduction in kidney/body weight ratio and a partial improvement in kidney function. Furthermore, cystic mice show significantly higher β3-AR levels than healthy controls, suggesting a correlation between receptor expression and disease development. Finally, β3-AR is expressed in human renal tissue and localizes to cyst-lining epithelial cells in patients. Thus, β3-AR is a potentially interesting target for the development of new treatments for ADPKD.


β3 Adrenergic Receptor Agonist Mirabegron Increases AQP2 and NKCC2 Urinary Excretion in OAB Patients: A Pleiotropic Effect of Interest for Patients with X-Linked Nephrogenic Diabetes Insipidus.

  • Serena Milano‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

We previously reported the novel finding that β3-AR is functionally expressed in the renal tubule and shares its cellular localization with the vasopressin receptor AVPR2, whose physiological stimulation triggers antidiuresis by increasing the plasma membrane expression of the water channel AQP2 and the NKCC2 symporter in renal cells. We also showed that pharmacologic stimulation of β3-AR is capable of triggering antidiuresis and correcting polyuria, in the knockout mice for the AVPR2 receptor, the animal model of human X-linked nephrogenic diabetes insipidus (XNDI), a rare genetic disease still missing a cure. Here, to demonstrate that the same response can be evoked in humans, we evaluated the effect of treatment with the β3-AR agonist mirabegron on AQP2 and NKCC2 trafficking, by evaluating their urinary excretion in a cohort of patients with overactive bladder syndrome, for the treatment of which the drug is already approved. Compared to baseline, treatment with mirabegron significantly increased AQP2 and NKCC2 excretion for the 12 weeks of treatment. This data is a step forward in corroborating the hypothesis that in patients with XNDI, treatment with mirabegron could bypass the inactivation of AVPR2, trigger antidiuresis and correct the dramatic polyuria which is the main hallmark of this disease.


Integration of Lipidomics and Transcriptomics Reveals Reprogramming of the Lipid Metabolism and Composition in Clear Cell Renal Cell Carcinoma.

  • Giuseppe Lucarelli‎ et al.
  • Metabolites‎
  • 2020‎

Clear cell renal cell carcinoma (ccRCC) is fundamentally a metabolic disease. Given the importance of lipids in many cellular processes, in this study we delineated a lipidomic profile of human ccRCC and integrated it with transcriptomic data to connect the variations in cancer lipid metabolism with gene expression changes. Untargeted lipidomic analysis was performed on 20 ccRCC and 20 paired normal tissues, using LC-MS and GC-MS. Different lipid classes were altered in cancer compared to normal tissue. Among the long chain fatty acids (LCFAs), significant accumulations of polyunsaturated fatty acids (PUFAs) were found. Integrated lipidomic and transcriptomic analysis showed that fatty acid desaturation and elongation pathways were enriched in neoplastic tissue. Consistent with these findings, we observed increased expression of stearoyl-CoA desaturase(SCD1) and FA elongase 2 and 5 in ccRCC. Primary renal cancer cells treated with a small molecule SCD1 inhibitor (A939572) proliferated at a slower rate than untreated cancer cells. In addition, after cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than that of untreated cancer cells. In conclusion, our findings delineate a ccRCC lipidomic signature and showed that SCD1 inhibition significantly reduced cancer cell proliferation and increased cisplatin sensitivity, suggesting that this pathway can be involved in ccRCC chemotherapy resistance.


Clusterin transcript variants expression in thyroid tumor: a potential marker of malignancy?

  • Paolo Fuzio‎ et al.
  • BMC cancer‎
  • 2015‎

Clusterin (CLU) is a ubiquitous multifunctional factor involved in neoplastic transformation. The CLU transcript variants and protein forms play a crucial role in balancing cells proliferation and death.


Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.

  • Alessio Valletti‎ et al.
  • PloS one‎
  • 2013‎

Clear cell renal cell carcinoma (ccRCC) is the most common malignant renal epithelial tumor and also the most deadly. To identify molecular changes occurring in ccRCC, in the present study we performed a genome wide analysis of its entire complement of mRNAs. Gene and exon-level analyses were carried out by means of the Affymetrix Exon Array platform. To achieve a reliable detection of differentially expressed cassette exons we implemented a novel methodology that considered contiguous combinations of exon triplets and candidate differentially expressed cassette exons were identified when the expression level was significantly different only in the central exon of the triplet. More detailed analyses were performed for selected genes using quantitative RT-PCR and confocal laser scanning microscopy. Our analysis detected over 2,000 differentially expressed genes, and about 250 genes alternatively spliced and showed differential inclusion of specific cassette exons comparing tumor and non-tumoral tissues. We demonstrated the presence in ccRCC of an altered expression of the PTP4A3, LAMA4, KCNJ1 and TCF21 genes (at both transcript and protein level). Furthermore, we confirmed, at the mRNA level, the involvement of CAV2 and SFRP genes that have previously been identified. At exon level, among potential candidates we validated a differentially included cassette exon in DAB2 gene with a significant increase of DAB2 p96 splice variant as compared to the p67 isoform. Based on the results obtained, and their robustness according to both statistical analysis and literature surveys, we believe that a combination of gene/isoform expression signature may remarkably contribute, after suitable validation, to a more effective and reliable definition of molecular biomarkers for ccRCC early diagnosis, prognosis and prediction of therapeutic response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: