Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis.

  • Roni Levin‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

We analyzed the distribution, fate, and functional role of phosphatidylinositol 4-phosphate (PtdIns4P) during phagosome formation and maturation. To this end, we used genetically encoded probes consisting of the PtdIns4P-binding domain of the bacterial effector SidM. PtdIns4P was found to undergo complex, multiphasic changes during phagocytosis. The phosphoinositide, which is present in the plasmalemma before engagement of the target particle, is transiently enriched in the phagosomal cup. Soon after the phagosome seals, PtdIns4P levels drop precipitously due to the hydrolytic activity of Sac2 and phospholipase C, becoming undetectable for ∼10 min. PtdIns4P disappearance coincides with the emergence of phagosomal PtdIns3P. Conversely, the disappearance of PtdIns3P that signals the transition from early to late phagosomes is accompanied by resurgence of PtdIns4P, which is associated with the recruitment of phosphatidylinositol 4-kinase 2A. The reacquisition of PtdIns4P can be prevented by silencing expression of the kinase and can be counteracted by recruitment of a 4-phosphatase with a heterodimerization system. Using these approaches, we found that the secondary accumulation of PtdIns4P is required for proper phagosomal acidification. Defective acidification may be caused by impaired recruitment of Rab7 effectors, including RILP, which were shown earlier to displace phagosomes toward perinuclear lysosomes. Our results show multimodal dynamics of PtdIns4P during phagocytosis and suggest that the phosphoinositide plays important roles during the maturation of the phagosome.


Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin.

  • Hongying Shen‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Clathrin-mediated endocytosis is a fundamental cellular process conserved from yeast to mammals and is an important endocytic route for the internalization of many specific cargos, including activated growth factor receptors. Here we examined changes in tyrosine phosphorylation, a representative output of growth factor receptor signaling, in cells in which endocytic clathrin-coated pits are frozen at a deeply invaginated state, that is, cells that lack dynamin (fibroblasts from dynamin 1, dynamin 2 double conditional knockout mice). The major change observed in these cells relative to wild-type cells was an increase in the phosphorylation state, and thus activation, of activated Cdc42-associated kinase (Ack), a nonreceptor tyrosine kinase. Ack is concentrated at clathrin-coated pits, and binds clathrin heavy chain via two clathrin boxes. RNA interference-based approaches and pharmacological manipulations further demonstrated that the phosphorylation of Ack requires both clathrin assembly into endocytic clathrin-coated pits and active Cdc42. These findings reveal a link between progression of clathrin-coated pits to endocytic vesicles and an activation-deactivation cycle of Ack.


Lowe syndrome-linked endocytic adaptors direct membrane cycling kinetics with OCRL in Dictyostelium discoideum.

  • Alexandre Luscher‎ et al.
  • Molecular biology of the cell‎
  • 2019‎

Mutations of the inositol 5-phosphatase OCRL cause Lowe syndrome (LS), characterized by congenital cataract, low IQ, and defective kidney proximal tubule resorption. A key subset of LS mutants abolishes OCRL's interactions with endocytic adaptors containing F&H peptide motifs. Converging unbiased methods examining human peptides and the unicellular phagocytic organism Dictyostelium discoideum reveal that, like OCRL, the Dictyostelium OCRL orthologue Dd5P4 binds two proteins closely related to the F&H proteins APPL1 and Ses1/2 (also referred to as IPIP27A/B). In addition, a novel conserved F&H interactor was identified, GxcU (in Dictyostelium) and the Cdc42-GEF FGD1-related F-actin binding protein (Frabin) (in human cells). Examining these proteins in D. discoideum, we find that, like OCRL, Dd5P4 acts at well-conserved and physically distinct endocytic stations. Dd5P4 functions in coordination with F&H proteins to control membrane deformation at multiple stages of endocytosis and suppresses GxcU-mediated activity during fluid-phase micropinocytosis. We also reveal that OCRL/Dd5P4 acts at the contractile vacuole, an exocytic osmoregulatory organelle. We propose F&H peptide-containing proteins may be key modifiers of LS phenotypes.


Overlapping roles of JIP3 and JIP4 in promoting axonal transport of lysosomes in human iPSC-derived neurons.

  • Swetha Gowrishankar‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

The dependence of neurons on microtubule-based motors for the movement of lysosomes over long distances raises questions about adaptations that allow neurons to meet these demands. Recently, JIP3/MAPK8IP3, a neuronally enriched putative adaptor between lysosomes and motors, was identified as a critical regulator of axonal lysosome abundance. In this study, we establish a human induced pluripotent stem cell (iPSC)-derived neuron model for the investigation of axonal lysosome transport and maturation and show that loss of JIP3 results in the accumulation of axonal lysosomes and the Alzheimer's disease-related amyloid precursor protein (APP)-derived Aβ42 peptide. We furthermore reveal an overlapping role of the homologous JIP4 gene in lysosome axonal transport. These results establish a cellular model for investigating the relationship between lysosome axonal transport and amyloidogenic APP processing and more broadly demonstrate the utility of human iPSC-derived neurons for the investigation of neuronal cell biology and pathology.


Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling.

  • Michal Bohdanowicz‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Sealing of phagosomes is accompanied by the disappearance of phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)) from their cytoplasmic leaflet. Elimination of PtdIns(4,5)P(2), which is required for actin remodeling during phagosome formation, has been attributed to hydrolysis by phospholipase C and phosphorylation by phosphatidylinositol 3-kinase. We found that two inositol 5-phosphatases, OCRL and Inpp5B, become associated with nascent phagosomes. Both phosphatases, which are Rab5 effectors, associate with the adaptor protein APPL1, which is recruited to the phagosomes by active Rab5. Knockdown of APPL1 or inhibition of Rab5 impairs association of OCRL and Inpp5B with phagosomes and prolongs the presence of PtdIns(4,5)P(2) and actin on their membranes. Even though APPL1 can serve as an anchor for Akt, its depletion accentuated the activation of the kinase, likely by increasing the amount of PtdIns(4,5)P(2) available to generate phosphatidylinositol (3,4,5)-trisphosphate. Thus, inositol 5-phosphatases are important contributors to the phosphoinositide remodeling and signaling that are pivotal for phagocytosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: