Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Layer 2/3 Pyramidal Neurons of the Mouse Granular Retrosplenial Cortex and Their Innervation by Cortico-Cortical Axons.

  • Rita M Robles‎ et al.
  • Frontiers in neural circuits‎
  • 2020‎

The retrosplenial cortex forms part of the cingulate cortex and is involved in memory and navigation. It is ventral region, the granular retrosplenial cortex, or GRSC is characterized by the presence, of small pyramidal neurons with a distinctive late-spiking (LS) firing pattern in layer 2/3. Using in vitro brain slices of the mouse GRSC we have studied the electrophysiological properties and synaptic responses of these LS neurons, comparing them with neighboring non-LS pyramidal neurons. LS and non-LS neurons showed different responses during cortical propagation of epileptiform discharges. All non-LS neurons generated large supra-threshold excitatory responses that generated bursts of action potentials. Contrastingly, the LS neurons showed small, and invariably subthreshold excitatory synaptic potentials. Although both types of pyramidal neurons were readily intermingled in the GRSC, we observed differences in their innervation by cortico-cortical axons. The application of glutamate to activate cortical neurons evoked synaptic responses in LS neurons only when applied at less than 250 μm, while in non-LS neurons we found synaptic responses when glutamate was applied at larger distances. Analysis of the synaptic responses evoked by long-range cortico-cortical axons (with the origin at 1200 μm from the recorded neurons or in the contralateral hemisphere) confirmed that non-LS neurons were strongly innervated by these axons, while they evoked only small responses or no response at all in the LS neurons (contralateral stimulation, non-LS: 194.0 ± 196.63 pA, n = 22; LS: 51.91 ± 35.26 pA, n = 10; p = 0.004). The excitatory/inhibitory balance was similar in both types of pyramidal neurons, but the latency of the EPSCs evoked by long-range cortico-cortical axons was longer in LS neurons (contralateral stimulation non-LS: 8.13 ± 1.23 ms, n = 17; LS: 10.76 ± 1.58 ms, n = 7; p = 0.004) suggesting a disynaptic mechanism. Our findings highlight the differential cortico-cortical axonal innervation of LS and non-LS pyramidal neurons, and that the two types of neurons are incorporated in different cortico-cortical neuronal circuits. This strongly suggests that the functional organization of the dorsal part of the GRSC is based on independent cortico-cortical circuits (among other elements).


Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

  • Víctor Rovira‎ et al.
  • PloS one‎
  • 2016‎

Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.


Synaptic mechanisms underlying the intense firing of neocortical layer 5B pyramidal neurons in response to cortico-cortical inputs.

  • Alejandro Sempere-Ferràndez‎ et al.
  • Brain structure & function‎
  • 2019‎

In the neocortex, large layer 5B pyramidal neurons implement a high-density firing code. In contrast, other subtypes of pyramidal neurons, including those in layer 2/3, are functionally characterized by their sparse firing rate. Here, we investigate the synaptic basis of this behavior by comparing the properties of the postsynaptic responses evoked by cortical inputs in layer 5B and layer 2/3 pyramidal neurons in vitro. We demonstrate that a major determinant of the larger responsiveness of layer 5B with respect to layer 2/3 pyramidal neurons is the different properties in their inhibitory postsynaptic currents (IPSCs): layer 5B pyramidal neurons have IPSCs of lower amplitude and the temporal delay between the excitatory and inhibitory synaptic components is also larger in these cells. Our data also suggest that this difference depends on the lower gain of the cortical response of layer 5 parvalbumin-positive fast-spiking (PV-FS) interneurons with respect to PV-FS cells from layer 2/3. We propose that, while superficial PV-FS interneurons are well suited to provide a powerful feed-forward inhibitory control of pyramidal neuron responses, layer 5 PV-FS interneurons are mainly engaged in a feedback inhibitory loop and only after a substantial recruitment of surrounding pyramidal cells do they respond to an external input.


Intramuscular Injection of Bone Marrow Stem Cells in Amyotrophic Lateral Sclerosis Patients: A Randomized Clinical Trial.

  • Emilio Geijo-Barrientos‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Preclinical studies suggest that stem cells may be a valuable therapeutic tool in amyotrophic lateral sclerosis (ALS). As it has been demonstrated that there are molecular changes at the end-plate during the early stages of motorneuron degeneration in animal models, we hypothesize that the local effect of this stem cell delivery method could slow the progressive loss of motor units (MUs) in ALS patients.


Joint nociceptor nerve activity and pain in an animal model of acute gout and its modulation by intra-articular hyaluronan.

  • Aida Marcotti‎ et al.
  • Pain‎
  • 2018‎

The mechanisms whereby deposition of monosodium urate (MSU) crystals in gout activates nociceptors to induce joint pain are incompletely understood. We tried to reproduce the signs of painful gouty arthritis, injecting into the knee joint of rats suspensions containing amorphous or triclinic, needle MSU crystals. The magnitude of MSU-induced inflammation and pain behavior signs were correlated with the changes in firing frequency of spontaneous and movement-evoked nerve impulse activity recorded in single knee joint nociceptor saphenous nerve fibers. Joint swelling, mechanical and cold allodynia, and hyperalgesia appeared 3 hours after joint injection of MSU crystals. In parallel, spontaneous and movement-evoked joint nociceptor impulse activity raised significantly. Solutions containing amorphous or needle-shaped MSU crystals had similar inflammatory and electrophysiological effects. Intra-articular injection of hyaluronan (HA, Synvisc), a high-MW glycosaminoglycan present in the synovial fluid with analgesic effects in osteoarthritis, significantly reduced MSU-induced behavioral signs of pain and decreased the enhanced joint nociceptor activity. Our results support the interpretation that pain and nociceptor activation are not triggered by direct mechanical stimulation of nociceptors by MSU crystals, but are primarily caused by the release of excitatory mediators by inflammatory cells activated by MSU crystals. Intra-articular HA decreased behavioral and electrophysiological signs of pain, possibly through its viscoelastic filtering effect on the mechanical forces acting over sensitized joint sensory endings and probably also by a direct interaction of HA molecules with the transducing channels expressed in joint nociceptor terminals.


Interneuron Heterotopia in the Lis1 Mutant Mouse Cortex Underlies a Structural and Functional Schizophrenia-Like Phenotype.

  • Raquel Garcia-Lopez‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

LIS1 is one of the principal genes related to Type I lissencephaly, a severe human brain malformation characterized by an abnormal neuronal migration in the cortex during embryonic development. This is clinically associated with epilepsy and cerebral palsy in severe cases, as well as a predisposition to developing mental disorders, in cases with a mild phenotype. Although genetic variations in the LIS1 gene have been associated with the development of schizophrenia, little is known about the underlying neurobiological mechanisms. We have studied how the Lis1 gene might cause deficits associated with the pathophysiology of schizophrenia using the Lis1/sLis1 murine model, which involves the deletion of the first coding exon of the Lis1 gene. Homozygous mice are not viable, but heterozygous animals present abnormal neuronal morphology, cortical dysplasia, and enhanced cortical excitability. We have observed reduced number of cells expressing GABA-synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) in the hippocampus and the anterior cingulate area, as well as fewer parvalbumin-expressing cells in the anterior cingulate cortex in Lis1/sLis1 mutants compared to control mice. The cFOS protein expression (indicative of neuronal activity) in Lis1/sLis1 mice was higher in the medial prefrontal (mPFC), perirhinal (PERI), entorhinal (ENT), ectorhinal (ECT) cortices, and hippocampus compared to control mice. Our results suggest that deleting the first coding exon of the Lis1 gene might cause cortical anomalies associated with the pathophysiology of schizophrenia.


Neuronal progenitors of the dentate gyrus express the SARS-CoV-2 cell receptor during migration in the developing human hippocampus.

  • José Manuel Hernandez-Lopez‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

The COVID-19 pandemic spread around the world is due to the enormous capacity of the SARS-CoV-2 coronavirus to be transmitted between humans, causing a threat to global public health. It has been shown that the entry of this virus into cells is highly facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) in the cell membrane. Currently, we have no precise knowledge of how this receptor expresses in the brain of human fetus and, as a consequence, we do not know how susceptible the neural cells in the developing brain are to being infected through the vertical transmission of this virus, from mother to fetus. In this work, we describe the expression of ACE2 in the human brain at 20 weeks of gestation. This stage corresponds to the period of neuronal generation, migration, and differentiation in the cerebral cortex. We describe the specific expression of ACE2 in neuronal precursors and migratory neuroblasts of the dentate gyrus in the hippocampus. This finding implies that SARS-CoV-2 infection during the fetal period may affect neuronal progenitor cells and alter the normal development of the brain region where memory engrams are generated. Thus, although vertical transmission of SARS-CoV-2 infection was reported in few cases, the massive infection rate of young people in terms of the new variants leads to the possibility of increasing the ratio of congenital infections and originating cognitive alterations, as well as neuronal circuit anomalies that may represent vulnerability to mental problems throughout life.


Callosal responses in a retrosplenial column.

  • Alejandro Sempere-Ferràndez‎ et al.
  • Brain structure & function‎
  • 2018‎

The axons forming the corpus callosum sustain the interhemispheric communication across homotopic cortical areas. We have studied how neurons throughout the columnar extension of the retrosplenial cortex integrate the contralateral input from callosal projecting neurons in cortical slices. Our results show that pyramidal neurons in layers 2/3 and the large, thick-tufted pyramidal neurons in layer 5B showed larger excitatory callosal responses than layer 5A and layer 5B thin-tufted pyramidal neurons, while layer 6 remained silent to this input. Feed-forward inhibitory currents generated by fast spiking, parvalbumin expressing  interneurons recruited by callosal axons mimicked the response size distribution of excitatory responses across pyramidal subtypes, being larger in those of superficial layers and in the layer 5B thick-tufted pyramidal cells. Overall, the combination of the excitatory and inhibitory currents evoked by callosal input had a strong and opposed effect in different layers of the cortex; while layer 2/3 pyramidal neurons were powerfully inhibited, the thick-tufted but not thin-tufted pyramidal neurons in layer 5 were strongly recruited. We believe that these results will help to understand the functional role of callosal connections in physiology and disease.


A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction.

  • Laura Domingo-Rodriguez‎ et al.
  • Nature communications‎
  • 2020‎

Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor expression in the mPFC-NAc pathway promotes the addiction-like phenotype. Our study unravels a new neurobiological mechanism underlying resilience and vulnerability to the development of food addiction, which could pave the way towards novel and efficient interventions for this disorder.


Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model.

  • Raquel Garcia-Lopez‎ et al.
  • Experimental neurology‎
  • 2015‎

LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: