Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis.

  • Stepan Tymoshenko‎ et al.
  • PLoS computational biology‎
  • 2015‎

Toxoplasma gondii is a human pathogen prevalent worldwide that poses a challenging and unmet need for novel treatment of toxoplasmosis. Using a semi-automated reconstruction algorithm, we reconstructed a genome-scale metabolic model, ToxoNet1. The reconstruction process and flux-balance analysis of the model offer a systematic overview of the metabolic capabilities of this parasite. Using ToxoNet1 we have identified significant gaps in the current knowledge of Toxoplasma metabolic pathways and have clarified its minimal nutritional requirements for replication. By probing the model via metabolic tasks, we have further defined sets of alternative precursors necessary for parasite growth. Within a human host cell environment, ToxoNet1 predicts a minimal set of 53 enzyme-coding genes and 76 reactions to be essential for parasite replication. Double-gene-essentiality analysis identified 20 pairs of genes for which simultaneous deletion is deleterious. To validate several predictions of ToxoNet1 we have performed experimental analyses of cytosolic acetyl-CoA biosynthesis. ATP-citrate lyase and acetyl-CoA synthase were localised and their corresponding genes disrupted, establishing that each of these enzymes is dispensable for the growth of T. gondii, however together they make a synthetic lethal pair.


A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism.

  • Linnea Österberg‎ et al.
  • PLoS computational biology‎
  • 2021‎

The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.


Machine learning-based investigation of the cancer protein secretory pathway.

  • Rasool Saghaleyni‎ et al.
  • PLoS computational biology‎
  • 2021‎

Deregulation of the protein secretory pathway (PSP) is linked to many hallmarks of cancer, such as promoting tissue invasion and modulating cell-cell signaling. The collection of secreted proteins processed by the PSP, known as the secretome, is often studied due to its potential as a reservoir of tumor biomarkers. However, there has been less focus on the protein components of the secretory machinery itself. We therefore investigated the expression changes in secretory pathway components across many different cancer types. Specifically, we implemented a dual approach involving differential expression analysis and machine learning to identify PSP genes whose expression was associated with key tumor characteristics: mutation of p53, cancer status, and tumor stage. Eight different machine learning algorithms were included in the analysis to enable comparison between methods and to focus on signals that were robust to algorithm type. The machine learning approach was validated by identifying PSP genes known to be regulated by p53, and even outperformed the differential expression analysis approach. Among the different analysis methods and cancer types, the kinesin family members KIF20A and KIF23 were consistently among the top genes associated with malignant transformation or tumor stage. However, unlike most cancer types which exhibited elevated KIF20A expression that remained relatively constant across tumor stages, renal carcinomas displayed a more gradual increase that continued with increasing disease severity. Collectively, our study demonstrates the complementary nature of a combined differential expression and machine learning approach for analyzing gene expression data, and highlights key PSP components relevant to features of tumor pathophysiology that may constitute potential therapeutic targets.


The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum.

  • Rasmus Agren‎ et al.
  • PLoS computational biology‎
  • 2013‎

We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production.


Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue.

  • Fredrik H Karlsson‎ et al.
  • PLoS computational biology‎
  • 2014‎

Metagenomic sequencing has contributed important new knowledge about the microbes that live in a symbiotic relationship with humans. With modern sequencing technology it is possible to generate large numbers of sequencing reads from a metagenome but analysis of the data is challenging. Here we present the bioinformatics pipeline MEDUSA that facilitates analysis of metagenomic reads at the gene and taxonomic level. We also constructed a global human gut microbial gene catalogue by combining data from 4 studies spanning 3 continents. Using MEDUSA we mapped 782 gut metagenomes to the global gene catalogue and a catalogue of sequenced microbial species. Hereby we find that all studies share about half a million genes and that on average 300,000 genes are shared by half the studied subjects. The gene richness is higher in the European studies compared to Chinese and American and this is also reflected in the species richness. Even though it is possible to identify common species and a core set of genes, we find that there are large variations in abundance of species and genes.


Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes.

  • Sergio Bordel‎ et al.
  • PLoS computational biology‎
  • 2010‎

Genome-scale metabolic models are available for an increasing number of organisms and can be used to define the region of feasible metabolic flux distributions. In this work we use as constraints a small set of experimental metabolic fluxes, which reduces the region of feasible metabolic states. Once the region of feasible flux distributions has been defined, a set of possible flux distributions is obtained by random sampling and the averages and standard deviations for each of the metabolic fluxes in the genome-scale model are calculated. These values allow estimation of the significance of change for each reaction rate between different conditions and comparison of it with the significance of change in gene transcription for the corresponding enzymes. The comparison of flux change and gene expression allows identification of enzymes showing a significant correlation between flux change and expression change (transcriptional regulation) as well as reactions whose flux change is likely to be driven only by changes in the metabolite concentrations (metabolic regulation). The changes due to growth on four different carbon sources and as a consequence of five gene deletions were analyzed for Saccharomyces cerevisiae. The enzymes with transcriptional regulation showed enrichment in certain transcription factors. This has not been previously reported. The information provided by the presented method could guide the discovery of new metabolic engineering strategies or the identification of drug targets for treatment of metabolic diseases.


Dynamic modelling under uncertainty: the case of Trypanosoma brucei energy metabolism.

  • Fiona Achcar‎ et al.
  • PLoS computational biology‎
  • 2012‎

Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies.


RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor.

  • Hao Wang‎ et al.
  • PLoS computational biology‎
  • 2018‎

RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM).


Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress.

  • Elzbieta Petelenz-Kurdziel‎ et al.
  • PLoS computational biology‎
  • 2013‎

We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2) and glycerol import (Stl1) and activates a regulatory enzyme in glycolysis (Pfk26/27). In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the regulation of the Fps1 glycerol facilitator. Taken together, we elucidated how different metabolic adaptation mechanisms cooperate and provide hypotheses for further experimental studies.


Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei.

  • Eduard J Kerkhoven‎ et al.
  • PLoS computational biology‎
  • 2013‎

Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP) of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate "leak" must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i) including additional enzymatic reactions in the glycosome, or (ii) adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.


Genome-scale metabolic modeling reveals metabolic trade-offs associated with lipid production in Rhodotorula toruloides.

  • Alīna Reķēna‎ et al.
  • PLoS computational biology‎
  • 2023‎

Rhodotorula toruloides is a non-conventional, oleaginous yeast able to naturally accumulate high amounts of microbial lipids. Constraint-based modeling of R. toruloides has been mainly focused on the comparison of experimentally measured and model predicted growth rates, while the intracellular flux patterns have been analyzed on a rather general level. Hence, the intrinsic metabolic properties of R. toruloides that make lipid synthesis possible are not thoroughly understood. At the same time, the lack of diverse physiological data sets has often been the bottleneck to predict accurate fluxes. In this study, we collected detailed physiology data sets of R. toruloides while growing on glucose, xylose, and acetate as the sole carbon source in chemically defined medium. Regardless of the carbon source, the growth was divided into two phases from which proteomic and lipidomic data were collected. Complemental physiological parameters were collected in these two phases and altogether implemented into metabolic models. Simulated intracellular flux patterns demonstrated the role of phosphoketolase in the generation of acetyl-CoA, one of the main precursors during lipid biosynthesis, while the role of ATP citrate lyase was not confirmed. Metabolic modeling on xylose as a carbon substrate was greatly improved by the detection of chirality of D-arabinitol, which together with D-ribulose were involved in an alternative xylose assimilation pathway. Further, flux patterns pointed to metabolic trade-offs associated with NADPH allocation between nitrogen assimilation and lipid biosynthetic pathways, which was linked to large-scale differences in protein and lipid content. This work includes the first extensive multi-condition analysis of R. toruloides using enzyme-constrained models and quantitative proteomics. Further, more precise kcat values should extend the application of the newly developed enzyme-constrained models that are publicly available for future studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: