Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness.

  • Ling Weng‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2017‎

Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex.


Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans.

  • Jingnan Du‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2020‎

Parcellation of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus based on their functional connectivity with the whole brain in resting state fMRI with 654 participants was performed to investigate how these regions with different functions in reward, emotion and their disorders are functionally connected to each other and to the whole brain. The human medial and lateral orbitofrontal cortex, the ventromedial prefrontal cortex, the anterior cingulate cortex, and the right and left inferior frontal gyrus have different functional connectivity with other brain areas and with each other; and each of these regions has several parcels with different functional connectivity with other brain areas. In terms of functional connectivity, the lateral orbitofrontal cortex extends especially on the right into the orbital part of the inferior frontal gyrus and provides connectivity with premotor cortical areas. The orbitofrontal cortex, especially the lateral orbitofrontal cortex, has connectivity not only with language-related areas in the inferior frontal gyrus (Broca's area), but also with the angular and supramarginal gyri. In this context, whereas the connectivity of the orbitofrontal cortex, ventromedial prefrontal cortex, and anterior cingulate cortex is symmetrical, the connectivity of the inferior frontal gyrus triangular and opercular parts is asymmetrical for the right and the left hemispheres. These findings have implications for understanding the neural bases of human emotion and decision-making, and for their disorders including depression.


Extensive cortical functional connectivity of the human hippocampal memory system.

  • Qing Ma‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2022‎

The cortical connections of the human hippocampal memory system are fundamental to understanding its operation in health and disease, especially in the context of the great development of the human cortex. The functional connectivity of the human hippocampal system was analyzed in 172 participants imaged at 7T in the Human Connectome Project. The human hippocampus has high functional connectivity not only with the entorhinal cortex, but also with areas that are more distant in the ventral 'what' stream including the perirhinal cortex and temporal cortical visual areas. Parahippocampal gyrus TF in humans has connectivity with this ventral 'what' subsystem. Correspondingly for the dorsal stream, the hippocampus has high functional connectivity not only with the presubiculum, but also with areas more distant, the medial parahippocampal cortex TH which includes the parahippocampal place or scene area, the posterior cingulate including retrosplenial cortex, and the parietal cortex. Further, there is considerable cross connectivity between the ventral and dorsal streams with the hippocampus. The findings are supported by anatomical connections, which together provide an unprecedented and quantitative overview of the extensive cortical connectivity of the human hippocampal system that goes beyond hierarchically organised and segregated pathways connecting the hippocampus and neocortex, and leads to new concepts on the operation of the hippocampal memory system in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: