Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence.

  • Lixue Liu‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Medical artificial intelligence (AI) has been moving from the research phase to clinical implementation. However, most AI-based models are mainly built using high-quality images preprocessed in the laboratory, which is not representative of real-world settings. This dataset bias proves a major driver of AI system dysfunction. Inspired by the design of flow cytometry, DeepFundus, a deep-learning-based fundus image classifier, is developed to provide automated and multidimensional image sorting to address this data quality gap. DeepFundus achieves areas under the receiver operating characteristic curves (AUCs) over 0.9 in image classification concerning overall quality, clinical quality factors, and structural quality analysis on both the internal test and national validation datasets. Additionally, DeepFundus can be integrated into both model development and clinical application of AI diagnostics to significantly enhance model performance for detecting multiple retinopathies. DeepFundus can be used to construct a data-driven paradigm for improving the entire life cycle of medical AI practice.


An artificial intelligence system for the whole process from diagnosis to treatment suggestion of ischemic retinal diseases.

  • Xinyu Zhao‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Ischemic retinal diseases (IRDs) are a series of common blinding diseases that depend on accurate fundus fluorescein angiography (FFA) image interpretation for diagnosis and treatment. An artificial intelligence system (Ai-Doctor) was developed to interpret FFA images. Ai-Doctor performed well in image phase identification (area under the curve [AUC], 0.991-0.999, range), diabetic retinopathy (DR) and branch retinal vein occlusion (BRVO) diagnosis (AUC, 0.979-0.992), and non-perfusion area segmentation (Dice similarity coefficient [DSC], 89.7%-90.1%) and quantification. The segmentation model was expanded to unencountered IRDs (central RVO and retinal vasculitis), with DSCs of 89.2% and 83.6%, respectively. A clinically applicable ischemia index (CAII) was proposed to evaluate ischemic degree; patients with CAII values exceeding 0.17 in BRVO and 0.08 in DR may be associated with increased possibility for laser therapy. Ai-Doctor is expected to achieve accurate FFA image interpretation for IRDs, potentially reducing the reliance on retinal specialists.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: