Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Genetic variation in 117 myelination-related genes in schizophrenia: Replication of association to lipid biosynthesis genes.

  • Tomasz Stokowy‎ et al.
  • Scientific reports‎
  • 2018‎

Schizophrenia is a serious psychotic disorder with high heritability. Several common genetic variants, rare copy number variants and ultra-rare gene-disrupting mutations have been linked to disease susceptibility, but there is still a large gap between the estimated and explained heritability. Since several studies have indicated brain myelination abnormalities in schizophrenia, we aimed to examine whether variants in myelination-related genes could be associated with risk for schizophrenia. We established a set of 117 myelination genes by database searches and manual curation. We used a combination of GWAS (SCZ_N = 35,476; CTRL_N = 46,839), exome chip (SCZ_N = 269; CTRL_N = 336) and exome sequencing data (SCZ_N = 2,527; CTRL_N = 2,536) from schizophrenia cases and healthy controls to examine common and rare variants. We found that a subset of lipid-related genes was nominally associated with schizophrenia (p = 0.037), but this signal did not survive multiple testing correction (FWER = 0.16) and was mainly driven by the SREBF1 and SREBF2 genes that have already been linked to schizophrenia. Further analysis demonstrated that the lowest nominal p-values were p = 0.0018 for a single common variant (rs8539) and p = 0.012 for burden of rare variants (LRP1 gene), but none of them survived multiple testing correction. Our findings suggest that variation in myelination-related genes is not a major risk factor for schizophrenia.


A Munc18-1 mutant mimicking phosphorylation by Down Syndrome-related kinase Dyrk1a supports normal synaptic transmission and promotes recovery after intense activity.

  • Jessica Classen‎ et al.
  • Scientific reports‎
  • 2020‎

Phosphorylation of Munc18-1 (Stxbp1), a presynaptic organizer of synaptic vesicle fusion, is a powerful mechanism to regulate synaptic strength. Munc18-1 is a proposed substrate for the Down Syndrome-related kinase dual-specificity tyrosine phosphorylation-regulate kinase 1a (Dyrk1a) and mutations in both genes cause intellectual disability. However, the functional consequences of Dyrk1a-dependent phosphorylation of Munc18-1 for synapse function are unknown. Here, we show that the proposed Munc18-1 phosphorylation site, T479, is among the highly constrained phosphorylation sites in the coding regions of the gene and is also located within a larger constrained coding region. We confirm that Dyrk1a phosphorylates Munc18-1 at T479. Patch-clamp physiology in conditional null mutant hippocampal neurons expressing Cre and either wildtype, or mutants mimicking or preventing phosphorylation, revealed that synaptic transmission is similar among the three groups: frequency/amplitude of mEPSCs, evoked EPSCs, paired pulse plasticity, rundown kinetics upon intense activity and the readily releasable pool. However, synapses expressing the phosphomimic mutant responded to intense activity with more pronounced facilitation. These data indicate that Dyrk1a-dependent Munc18-1 phosphorylation has a minor impact on synaptic transmission, only after intense activity, and that the role of genetic variation in both genes in intellectual disability may be through different mechanisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: