Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Accurate Classification of NF1 Gene Variants in 84 Italian Patients with Neurofibromatosis Type 1.

  • Alessandro Stella‎ et al.
  • Genes‎
  • 2018‎

Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant genetic diseases. It is caused by mutations in the NF1 gene encoding for the large protein, neurofibromin. Genetic testing of NF1 is cumbersome because 50% of cases are sporadic, and there are no mutation hot spots. In addition, the most recognizable NF1 clinical features—café-au-lait (CALs) spots and axillary and/or inguinal freckling—appear early in childhood but are rather non-specific. Thus, the identification of causative variants is extremely important for early diagnosis, especially in paediatric patients. Here, we aimed to identify the underlying genetic defects in 72 index patients referred to our centre for NF1. Causative mutations were identified in 58 subjects, with 29 being novel changes. We evaluated missense and non-canonical splicing mutations with both protein and splicing prediction algorithms. The ratio of splicing mutations detected was higher than that reported in recent patients’ series and in the Human Gene Mutation Database (HGMD). After applying in silico predictive tools to 41 previously reported missense variants, we demonstrated that 46.3% of these putatively missense mutations were forecasted to alter splicing instead. Our data suggest that mutations affecting splicing can be frequently underscored if not analysed in depth. We confirm that hamartomas can be useful for diagnosing NF1 in children. Lisch nodules and cutaneous neurofibromas were more frequent in patients with frameshifting mutations. In conclusion, we demonstrated that comprehensive in silico analysis can be a highly specific method for predicting the nature of NF1 mutations and may help in assuring proper patient care.


Characterization of the rs2802292 SNP identifies FOXO3A as a modifier locus predicting cancer risk in patients with PJS and PHTS hamartomatous polyposis syndromes.

  • Giovanna Forte‎ et al.
  • BMC cancer‎
  • 2014‎

Hamartomatous polyposis syndromes (HPS) are inherited conditions associated with high cancer risk. They include the Peutz-Jeghers and the PTEN hamartoma tumor syndromes, which are caused by mutations in the LKB1 and PTEN genes, respectively. Estimation of cancer risk is crucial in order to optimize surveillance, but no prognostic markers are currently available for these conditions. Our study relies on a 'signal transduction' hypothesis based on the crosstalk between LKB1/AMPK and PI3K/PTEN/Akt signaling at the level of the tumor suppressor protein FoxO3A. Interestingly, the FOXO3A rs2802292 G-allele was shown to be associated with longevity, reduced risk of aging-related diseases and increased expression of FoxO3A mRNA.


Disease expression in juvenile polyposis syndrome: a retrospective survey on a cohort of 221 European patients and comparison with a literature-derived cohort of 473 SMAD4/BMPR1A pathogenic variant carriers.

  • Robert Blatter‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2020‎

Juvenile polyposis syndrome (JPS) is a rare, autosomal-dominantly inherited cancer predisposition caused in approximately 50% of cases by pathogenic germline variants in SMAD4 and BMPR1A. We aimed to gather detailed clinical and molecular genetic information on JPS disease expression to provide a basis for management guidelines and establish open access variant databases.


Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors.

  • Daria C Loconte‎ et al.
  • PloS one‎
  • 2015‎

PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: