Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22.

  • Max Gulhane‎ et al.
  • Scientific reports‎
  • 2016‎

Prolonged high fat diets (HFD) induce low-grade chronic intestinal inflammation in mice, and diets high in saturated fat are a risk factor for the development of human inflammatory bowel diseases. We hypothesized that HFD-induced endoplasmic reticulum (ER)/oxidative stress occur in intestinal secretory goblet cells, triggering inflammatory signaling and reducing synthesis/secretion of proteins that form the protective mucus barrier. In cultured intestinal cells non-esterified long-chain saturated fatty acids directly increased oxidative/ER stress leading to protein misfolding. A prolonged HFD elevated the intestinal inflammatory cytokine signature, alongside compromised mucosal barrier integrity with a decrease in goblet cell differentiation and Muc2, a loss in the tight junction protein, claudin-1 and increased serum endotoxin levels. In Winnie mice, that develop spontaneous colitis, HFD-feeding increased ER stress, further compromised the mucosal barrier and increased the severity of colitis. In obese mice IL-22 reduced ER/oxidative stress and improved the integrity of the mucosal barrier, and reversed microbial changes associated with obesity with an increase in Akkermansia muciniphila. Consistent with epidemiological studies, our experiments suggest that HFDs are likely to impair intestinal barrier function, particularly in early life, which partially involves direct effects of free-fatty acids on intestinal cells, and this can be reversed by IL-22 therapy.


Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma.

  • Thomas Kryza‎ et al.
  • Theranostics‎
  • 2020‎

Background: CUB domain-containing protein 1 (CDCP1) is a cell surface receptor regulating key signalling pathways in malignant cells. CDCP1 has been proposed as a molecular target to abrogate oncogenic signalling pathways and specifically deliver anti-cancer agents to tumors. However, the development of CDCP1-targeting agents has been questioned by its frequent proteolytic processing which was thought to result in shedding of the CDCP1 extracellular domain limiting its targetability. In this study, we investigated the relevance of targeting CDCP1 in the context of pancreatic ductal adenocarcinoma (PDAC) and assess the impact of CDCP1 proteolysis on the effectiveness of CDCP1 targeting agents. Methods: The involvement of CDCP1 in PDAC progression was assessed by association analysis in several PDAC cohorts and the proteolytic processing of CDCP1 was evaluated in PDAC cell lines and patient-derived cells. The consequences of CDCP1 proteolysis on its targetability in PDAC cells was assessed using immunoprecipitation, immunostaining and biochemical assays. The involvement of CDCP1 in PDAC progression was examined by loss-of-function in vitro and in vivo experiments employing PDAC cells expressing intact or cleaved CDCP1. Finally, we generated antibody-based imaging and therapeutic agents targeting CDCP1 to demonstrate the feasibility of targeting this receptor for detection and treatment of PDAC tumors. Results: High CDCP1 expression in PDAC is significantly associated with poorer patient survival. In PDAC cells proteolysis of CDCP1 does not always result in the shedding of CDCP1-extracellular domain which can interact with membrane-bound CDCP1 allowing signal transduction between the different CDCP1-fragments. Targeting CDCP1 impairs PDAC cell functions and PDAC tumor growth independently of CDCP1 cleavage status. A CDCP1-targeting antibody is highly effective at delivering imaging radionuclides and cytotoxins to PDAC cells allowing specific detection of tumors by PET/CT imaging and superior anti-tumor effects compared to gemcitabine in in vivo models. Conclusion: Independent of its cleavage status, CDCP1 exerts oncogenic functions in PDAC and has significant potential to be targeted for improved radiological staging and treatment of this cancer. Its elevated expression by most PDAC tumors and lack of expression by normal pancreas and other major organs, suggest that targeting CDCP1 could benefit a significant proportion of PDAC patients. These data support the further development of CDCP1-targeting agents as personalizable tools for effective imaging and treatment of PDAC.


Gut microbiota shape the inflammatory response in mice with an epithelial defect.

  • Ran Wang‎ et al.
  • Gut microbes‎
  • 2021‎

Intestinal epithelial cell endoplasmic reticulum (ER) stress has been implicated in intestinal inflammation. It remains unclear whether ER stress is an initiator of or a response to inflammation. Winnie mice, carrying a Muc2 gene mutation resulting in intestinal goblet cell ER stress, develop spontaneous colitis with a depleted mucus barrier and increased bacterial translocation. This study aims to determine whether the microbiota was required for the development of Winnie colitis, and whether protein misfolding itself can initiate inflammation directly in absence of the microbiota. To assess the role of microbiota in driving Winnie colitis, WT and Winnie mice on the same background were rederived into the germ-free facility and housed in the Trexler-type soft-sided isolators. The colitis phenotype of these mice was assessed and compared to WT and Winnie mice housed within a specific pathogen-free facility. We found that Winnie colitis was substantially reduced but not abolished under germ-free conditions. Expression of inflammatory cytokine genes was reduced but several chemokines remained elevated in absence of microbiota. Concomitantly, ER stress was also diminished, although mucin misfolding persisted. RNA-Seq revealed that Winnie differentiated colon organoids have decreased expression of the negative regulators of the inflammatory response compared to WT. This data along with the increase in Mip2a chemokine expression, suggests that the epithelial cells in the Winnie mice are more responsive to stimuli. Moreover, the data demonstrate that intestinal epithelial intrinsic protein misfolding can prime an inflammatory response without initiating the unfolded protein response in the absence of the microbiota. However, the microbiota is necessary for the amplification of colitis in Winnie mice. Genetic predisposition to mucin misfolding in secretory cells initiates mild inflammatory signals. However, the inflammatory signal sets a forward-feeding cycle establishing progressive inflammation in the presence of microbiota.Abbreviations: Endoplasmic Reticulum: ER; Mucin-2: Muc-2; GF: Germ-Free; Inflammatory Bowel Disease: IBD.


Preclinical Molecular PET-CT Imaging Targeting CDCP1 in Colorectal Cancer.

  • Tahleesa J Cuda‎ et al.
  • Contrast media & molecular imaging‎
  • 2021‎

Colorectal cancer (CRC) is the third most common malignancy in the world, with 22% of patients presenting with metastatic disease and a further 50% destined to develop metastasis. Molecular imaging uses antigen-specific ligands conjugated to radionuclides to detect and characterise primary cancer and metastases. Expression of the cell surface protein CDCP1 is increased in CRC, and here we sought to assess whether it is a suitable molecular imaging target for the detection of this cancer. CDCP1 expression was assessed in CRC cell lines and a patient-derived xenograft to identify models suitable for evaluation of radio-labelled 10D7, a CDCP1-targeted, high-affinity monoclonal antibody, for preclinical molecular imaging. Positron emission tomography-computed tomography was used to compare zirconium-89 (89Zr)-10D7 avidity to a nonspecific, isotype control 89Zr-labelled IgGκ1 antibody. The specificity of CDCP1-avidity was further confirmed using CDCP1 silencing and blocking models. Our data indicate high avidity and specificity for of 89Zr-10D7 in CDCP1 expressing tumors at. Significantly higher levels than normal organs and blood, with greatest tumor avidity observed at late imaging time points. Furthermore, relatively high avidity is detected in high CDCP1 expressing tumors, with reduced avidity where CDCP1 expression was knocked down or blocked. The study supports CDCP1 as a molecular imaging target for CRC in preclinical PET-CT models using the radioligand 89Zr-10D7.


IgM and IgA augmented autoantibody signatures improve early-stage detection of colorectal cancer prior to nodal and distant spread.

  • Md Saiful Islam Roney‎ et al.
  • Clinical & translational immunology‎
  • 2021‎

Tumor-associated autoantibodies (AAbs) in individuals with cancer can precede clinical diagnosis by several months to years. The objective of this study was to determine whether the primary immune response in form of IgM and gut mucosa-associated IgA can aid IgG AAbs in the detection of early-stage colorectal cancer (CRC).


Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages.

  • Thao Thanh Tran‎ et al.
  • PLoS pathogens‎
  • 2022‎

A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.


Preexisting tissue mechanical hypertension at adherens junctions disrupts apoptotic extrusion in epithelia.

  • Zoya Mann‎ et al.
  • Molecular biology of the cell‎
  • 2024‎

Apical extrusion is a tissue-intrinsic process that allows epithelia to eliminate unfit or surplus cells. This is exemplified by the early extrusion of apoptotic cells, which is critical to maintain the epithelial barrier and prevent inflammation. Apoptotic extrusion is an active mechanical process, which involves mechanotransduction between apoptotic cells and their neighbors, as well as local changes in tissue mechanics. Here we report that the preexisting mechanical tension at adherens junctions (AJs) conditions the efficacy of apoptotic extrusion. Specifically, increasing baseline mechanical tension by overexpression of a phosphomimetic Myosin II regulatory light chain (MRLC) compromises apoptotic extrusion. This occurs when tension is increased in either the apoptotic cell or its surrounding epithelium. Further, we find that the proinflammatory cytokine, TNFα, stimulates Myosin II and increases baseline AJ tension to disrupt apical extrusion, causing apoptotic cells to be retained in monolayers. Importantly, reversal of mechanical tension with an inhibitory MRLC mutant or tropomyosin inhibitors is sufficient to restore apoptotic extrusion in TNFα-treated monolayers. Together, these findings demonstrate that baseline levels of tissue tension are important determinants of apoptotic extrusion, which can potentially be coopted by pathogenetic factors to disrupt the homeostatic response of epithelia to apoptosis.


The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium.

  • Alan Huett‎ et al.
  • Cell host & microbe‎
  • 2012‎

Several species of pathogenic bacteria replicate within an intracellular vacuolar niche. Bacteria that escape into the cytosol are captured by the autophagic pathway and targeted for lysosomal degradation, representing a defense against bacterial exploitation of the host cytosol. Autophagic capture of Salmonella Typhimurium occurs predominantly via generation of a polyubiquitin signal around cytosolic bacteria, binding of adaptor proteins, and recruitment of autophagic machinery. However, the components mediating bacterial target selection and ubiquitination remain obscure. We identify LRSAM1 as the E3 ligase responsible for anti-Salmonella autophagy-associated ubiquitination. LRSAM1 localizes to several intracellular bacterial pathogens and generates the bacteria-associated ubiquitin signal; these functions require LRSAM1's leucine-rich repeat and RING domains, respectively. Using cells from LRSAM1-deficient individuals, we confirm that LRSAM1 is required for ubiquitination associated with intracellular bacteria but dispensable for ubiquitination of aggregated proteins. LRSAM1 is therefore a bacterial recognition protein and ubiquitin ligase that defends the cytoplasm from invasive pathogens.


Integrated Genomics of Crohn's Disease Risk Variant Identifies a Role for CLEC12A in Antibacterial Autophagy.

  • Jakob Begun‎ et al.
  • Cell reports‎
  • 2015‎

The polymorphism ATG16L1 T300A, associated with increased risk of Crohn's disease, impairs pathogen defense mechanisms including selective autophagy, but specific pathway interactions altered by the risk allele remain unknown. Here, we use perturbational profiling of human peripheral blood cells to reveal that CLEC12A is regulated in an ATG16L1-T300A-dependent manner. Antibacterial autophagy is impaired in CLEC12A-deficient cells, and this effect is exacerbated in the presence of the ATG16L1(∗)300A risk allele. Clec12a(-/-) mice are more susceptible to Salmonella infection, supporting a role for CLEC12A in antibacterial defense pathways in vivo. CLEC12A is recruited to sites of bacterial entry, bacteria-autophagosome complexes, and sites of sterile membrane damage. Integrated genomics identified a functional interaction between CLEC12A and an E3-ubiquitin ligase complex that functions in antibacterial autophagy. These data identify CLEC12A as early adaptor molecule for antibacterial autophagy and highlight perturbational profiling as a method to elucidate defense pathways in complex genetic disease.


Elevating CDCA3 Levels Enhances Tyrosine Kinase Inhibitor Sensitivity in TKI-Resistant EGFR Mutant Non-Small-Cell Lung Cancer.

  • Katherine B Sahin‎ et al.
  • Cancers‎
  • 2021‎

Tyrosine kinase inhibitors (TKIs) are the first-line therapy for non-small-cell lung cancers (NSCLC) that harbour sensitising mutations within the epidermal growth factor receptor (EGFR). However, resistance remains a key issue, with tumour relapse likely to occur. We have previously identified that cell division cycle-associated protein 3 (CDCA3) is elevated in adenocarcinoma (LUAD) and correlates with sensitivity to platinum-based chemotherapy. Herein, we explored whether CDCA3 levels were associated with EGFR mutant LUAD and TKI response. We demonstrate that in a small-cohort tissue microarray and in vitro LUAD cell line panel, CDCA3 protein levels are elevated in EGFR mutant NSCLC as a result of increased protein stability downstream of receptor tyrosine kinase signalling. Here, CDCA3 protein levels correlated with TKI potency, whereby CDCA3high EGFR mutant NSCLC cells were most sensitive. Consistently, ectopic overexpression or inhibition of casein kinase 2 using CX-4945, which pharmacologically prevents CDCA3 degradation, upregulated CDCA3 levels and the response of T790M(+) H1975 cells and two models of acquired resistance to TKIs. Accordingly, it is possible that strategies to upregulate CDCA3 levels, particularly in CDCA3low tumours or upon the emergence of therapy resistance, might improve the response to EGFR TKIs and benefit patients.


Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer.

  • Brittney S Harrington‎ et al.
  • Theranostics‎
  • 2020‎

CUB-domain containing protein 1 (CDCP1) is a cancer associated cell surface protein that amplifies pro-tumorigenic signalling by other receptors including EGFR and HER2. Its potential as a cancer target is supported by studies showing that anti-CDCP1 antibodies inhibit cell migration and survival in vitro, and tumor growth and metastasis in vivo. Here we characterize two anti-CDCP1 antibodies, focusing on immuno-conjugates of one of these as a tool to detect and inhibit ovarian cancer. Methods: A panel of ovarian cancer cell lines was examined for cell surface expression of CDCP1 and loss of expression induced by anti-CDCP1 antibodies 10D7 and 41-2 using flow cytometry and Western blot analysis. Surface plasmon resonance analysis and examination of truncation mutants was used to analyse the binding properties of the antibodies for CDCP1. Live-cell spinning-disk confocal microscopy of GFP-tagged CDCP1 was used to track internalization and intracellular trafficking of CDCP1/antibody complexes. In vivo, zirconium 89-labelled 10D7 was detected by positron-emission tomography imaging, of an ovarian cancer patient-derived xenograft grown intraperitoneally in mice. The efficacy of cytotoxin-conjugated 10D7 was examined against ovarian cancer cells in vitro and in vivo. Results: Our data indicate that each antibody binds with high affinity to the extracellular domain of CDCP1 causing rapid internalization of the receptor/antibody complex and degradation of CDCP1 via processes mediated by the kinase Src. Highlighting the potential clinical utility of CDCP1, positron-emission tomography imaging, using zirconium 89-labelled 10D7, was able to detect subcutaneous and intraperitoneal xenograft ovarian cancers in mice, including small (diameter <3 mm) tumor deposits of an ovarian cancer patient-derived xenograft grown intraperitoneally in mice. Furthermore, cytotoxin-conjugated 10D7 was effective at inhibiting growth of CDCP1-expressing ovarian cancer cells in vitro and in vivo. Conclusions: These data demonstrate that CDCP1 internalizing antibodies have potential for killing and detection of CDCP1 expressing ovarian cancer cells.


Defining Transabdominal Intestinal Ultrasound Treatment Response and Remission in Inflammatory Bowel Disease: Systematic Review and Expert Consensus Statement.

  • Johan F K F Ilvemark‎ et al.
  • Journal of Crohn's & colitis‎
  • 2022‎

No consensus exists on defining intestinal ultrasound response, transmural healing, or transmural remission in inflammatory bowel disease, nor clear guidance for optimal timing of assessment during treatment. This systematic review and expert consensus study aimed to define such recommendations, along with key parameters included in response reporting.


An Extremes of Phenotype Approach Confirms Significant Genetic Heterogeneity in Patients with Ulcerative Colitis.

  • Sally Mortlock‎ et al.
  • Journal of Crohn's & colitis‎
  • 2023‎

Ulcerative colitis [UC] is a major form of inflammatory bowel disease globally. Phenotypic heterogeneity is defined by several variables including age of onset and disease extent. The genetics of disease severity remains poorly understood. To further investigate this, we performed a genome wide association [GWA] study using an extremes of phenotype strategy.


MUC13 Cell Surface Mucin Limits Salmonella Typhimurium Infection by Protecting the Mucosal Epithelial Barrier.

  • Michael A McGuckin‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2023‎

MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action.


Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer.

  • Brittney S Harrington‎ et al.
  • British journal of cancer‎
  • 2016‎

Development of targeted therapies for high-grade serous ovarian cancer (HGSC) remains challenging, as contributing molecular pathways are poorly defined or expressed heterogeneously. CUB-domain containing protein 1 (CDCP1) is a cell-surface protein elevated in lung, colorectal, pancreas, renal and clear cell ovarian cancer.


Enterococcus faecalis AHG0090 is a Genetically Tractable Bacterium and Produces a Secreted Peptidic Bioactive that Suppresses Nuclear Factor Kappa B Activation in Human Gut Epithelial Cells.

  • Páraic Ó Cuív‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Enterococcus faecalis is an early coloniser of the human infant gut and contributes to the development of intestinal immunity. To better understand the functional capacity of E. faecalis, we constructed a broad host range RP4 mobilizable vector, pEHR513112, that confers chloramphenicol resistance and used a metaparental mating approach to isolate E. faecalis AHG0090 from a fecal sample collected from a healthy human infant. We demonstrated that E. faecalis AHG0090 is genetically tractable and could be manipulated using traditional molecular microbiology approaches. E. faecalis AHG0090 was comparable to the gold-standard anti-inflammatory bacterium Faecalibacterium prausnitzii A2-165 in its ability to suppress cytokine-mediated nuclear factor kappa B (NF-κB) activation in human gut-derived LS174T goblet cell like and Caco-2 enterocyte-like cell lines. E. faecalis AHG0090 and F. prausnitzii A2-165 produced secreted low molecular weight NF-κB suppressive peptidic bioactives. Both bioactives were sensitive to heat and proteinase K treatments although the E. faecalis AHG0090 bioactive was more resilient to both forms of treatment. As expected, E. faecalis AHG0090 suppressed IL-1β-induced NF-κB-p65 subunit nuclear translocation and expression of the NF-κB regulated genes IL-6, IL-8 and CXCL-10. Finally, we determined that E. faecalis AHG0090 is distantly related to other commensal strains and likely encodes niche factors that support effective colonization of the infant gut.


A Nucleotide Analog Prevents Colitis-Associated Cancer via Beta-Catenin Independently of Inflammation and Autophagy.

  • Yong Hua Sheng‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

Chronic bowel inflammation increases the risk of colon cancer; colitis-associated cancer (CAC). Thiopurine treatments are associated with a reduction in dysplasia and CAC in inflammatory bowel disease (IBD). Abnormal Wnt/β-catenin signalling is characteristic of >90% of colorectal cancers. Immunosuppression by thiopurines is via Rac1 GTPase, which also affects Wnt/β-catenin signalling. Autophagy is implicated in colonic tumors, and topical delivery of the thiopurine thioguanine (TG) is known to alleviate colitis and augment autophagy. This study investigated the effects of TG in a murine model of CAC and potential mechanisms.


Disruption of Glycogen Utilization Markedly Improves the Efficacy of Carboplatin against Preclinical Models of Clear Cell Ovarian Carcinoma.

  • Tashbib Khan‎ et al.
  • Cancers‎
  • 2020‎

High stage and recurrent ovarian clear cell carcinoma (OCC) are associated with poor prognosis and resistance to chemotherapy. A distinguishing histological feature of OCC is abundant cytoplasmic stores of glucose, in the form of glycogen, that can be mobilized for cellular metabolism. Here, we report the effect on preclinical models of OCC of disrupting glycogen utilization using the glucose analogue 2-deoxy-D-glucose (2DG). At concentrations significantly lower than previously reported for other cancers, 2DG markedly improves the efficacy in vitro of carboplatin chemotherapy against chemo-sensitive TOV21G and chemo-resistant OVTOKO OCC cell lines, and this is accompanied by the depletion of glycogen. Of note, 2DG doses-of more than 10-fold lower than previously reported for other cancers-significantly improve the efficacy of carboplatin against cell line and patient-derived xenograft models in mice that mimic the chemo-responsiveness of OCC. These findings are encouraging, in that 2DG doses, which are substantially lower than previously reported to cause adverse events in cancer patients, can safely and significantly improve the efficacy of carboplatin against OCC. Our results thus justify clinical trials to evaluate whether low dose 2DG improves the efficacy of carboplatin in OCC patients.


Expression of CD49f defines subsets of human regulatory T cells with divergent transcriptional landscape and function that correlate with ulcerative colitis disease activity.

  • Harshi Weerakoon‎ et al.
  • Clinical & translational immunology‎
  • 2021‎

Adoptive regulatory T cell (Treg) therapy is being trialled for the treatment of different autoimmune disorders, including inflammatory bowel diseases (IBD). In-depth understanding of the biological variability of Treg in the human blood may be required to improve IBD immune monitoring and treatment strategies.


Prospective randomised controlled trial of adults with perianal fistulising Crohn's disease and optimised therapeutic infliximab levels: PROACTIVE trial study protocol.

  • Bonita Gu‎ et al.
  • BMJ open‎
  • 2021‎

Perianal fistulising Crohn's disease (pfCD) can be somewhat treatment refractory. Higher infliximab trough levels (TLIs) may improve fistula healing rates; however, it remains unclear whether escalating infliximab therapy to meet higher TLI targets using proactive, or routine, therapeutic drug monitoring (TDM) improves outcomes. This randomised controlled trial aimed to assess whether infliximab therapy targeting higher TLIs guided by proactive TDM improves outcomes compared with standard therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: