Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma.

  • Jie Wei‎ et al.
  • Molecular medicine reports‎
  • 2020‎

The gasdermin (GSDM) superfamily has been demonstrated to consist of several important molecules that modulate multifunctional signal processes, such as cell pyroptosis. In this research, the roles of the GSDM superfamily on the occurrence and prognosis of lung adenocarcinoma (LUAD) were evaluated using integrative bioinformatic analyses and in vitro methods. Here, data from several bioinformatic platforms revealed that GSDMC is significantly upregulated in LUAD tissues and cell lines. Real‑time fluorescence quantitative PCR (qPCR) demonstrated that GSDMC was obviously upregulated in radio‑resistant LUAD cells, compared with their parental cells. Moreover, upregulated GSDMC expression was confirmed to be an independent indicator of poor first progression (FP) and overall survival (OS) in LUAD patients. DNA methylation analysis showed an evidently negative correlation between GSDMC expression and methylation status of one CpG site (cg05316065) in its DNA sequence. Patients with high methylation values had significantly higher Karnofsky performance scores (KPSs) and prolonged OS rates. Together, we confirmed that overexpression of GSDMC acts as a promising predictive factor for the poor prognosis of LUAD patients.


Icariin promotes osteogenic differentiation of BMSCs by upregulating BMAL1 expression via BMP signaling.

  • Zengfa Huang‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Increasing research has demonstrated that expression of brain and muscle ARNT‑like 1 (BMAL1) and other circadian clock genes can be regulated by drugs and toxicants. We previously demonstrated that icariin, extracted from Herba Epimedii, sromotes osteogenic differentiation. However, the mechanism underlying the association between icariin and BMAL1 in osteogenic differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) remains unclear. The present study was designed with an aim to clarify the association between icariin and BMAL1 in osteogenic differentiation of BMSCs. The Cell Counting Kit‑8 assay was used to evaluate cell proliferation. The expression of bone morphogenetic protein 2 (BMP2), RUNX family transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OC) and BMAL1 in BMSCs was evaluated by reverse transcription‑quantitative PCR and western blotting. ALP and Alizarin red S (ARS) staining were also performed. Icariin promoted BMSC proliferation, and upregulated expression of osteogenic genes and BMAL1. In addition, expression of the osteogenic genes BMP2, RUNX2, ALP and OC were upregulated by BMAL1 overexpression. Furthermore, we confirmed that BMAL1 deficiency suppressed osteogenic differentiation in BMSCs. Finally, ARS staining of BMAL1‑/‑ BMSCs revealed that BMAL1 was an essential intermediary in matrix mineralization during osteogenic differentiation. In conclusion, these results demonstrated that icariin promoted osteogenic differentiation through BMAL1‑BMP2 signaling in BMSCs. The present study thus described a novel target of icariin that has potential applications in the treatment of osteogenic disorders.


Ezetimibe prevents the development of non‑alcoholic fatty liver disease induced by high‑fat diet in C57BL/6J mice.

  • Xiang Wang‎ et al.
  • Molecular medicine reports‎
  • 2014‎

There is currently no established treatment for non‑alcoholic fatty liver disease (NAFLD), including its most extreme form, non‑alcoholic steatohepatitis (NASH). Ezetimibe, an inhibitor of Niemann‑Pick C1 Like 1‑dependent cholesterol absorption, improves diet‑induced hyperlipidemia and attenuates liver steatosis and insulin resistance. The aim of the present study was to determine whether ezetimibe treatment is able to inhibit the development of NAFLD, and to elucidate the underlying mechanism, using C57BL/6J (B6) mice maintained on a high‑fat diet. Male B6 mice (20 weeks of age) were divided into the following two groups (n=7 in each group): Mice fed a high‑fat diet for four weeks and mice fed a high‑fat diet with 0.0064% (wt/wt) ezetimibe (5 mg/kg/day) for four weeks. Administration of ezetimibe significantly reduced liver steatosis and fibrosis. Ezetimibe reduced serum cholesterol, hepatic fat accumulation and insulin resistance in the liver of mice fed the high‑fat diet. Furthermore, ezetimibe significantly reduced hepatic mRNA expression of Acc1 and Scd1, which are involved in hepatic fatty acid synthesis. Ezetimibe significantly reduced hepatic Cd36 gene expression, upregulation of which is significantly associated with insulin resistance, hyperinsulinemia and increased steatosis. The protein expression of SKP2, a viable therapeutic target in human cancer, was also reduced by ezetimibe. These findings suggest that ezetimibe may be an effective therapy for high fat‑induced NAFLD, including NASH.


GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway.

  • Ying Jiang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

GGsTOP is a novel and selective inhibitor of gamma-glutamyl transferase (GGT), a cell-surface enzyme that has a key role in glutathione homeostasis and the maintenance of cellular reactive oxygen species (ROS). ROS are essential for wound healing. However, little is known about the molecular mechanisms underlying the inhibition of GGT by GGsTOP in human periodontal ligament cells (hPLCs). The present study assessed GGT expression in mouse periodontal ligament tissues, GGT activity in hPLCs, and the potential physiological effect of GGsTOP on hPLC migration. Immunohistochemical analysis confirmed that GGT was widely expressed in mouse periodontal ligament tissue. Treatment with GGsTOP was associated with greater proliferation and migration of hPLCs, and higher levels of cellular ROS compared with untreated hPLCs. However, the increase in intracellular ROS was attenuated in hPLCs co‑cultured with the anti‑oxidant N‑acetylcysteine (NAC), a precursor of glutathione. The higher ROS levels associated with GGsTOP treatment were in parallel with increases in the levels of type I collagen and alpha smooth muscle actin, which was inhibited in hPLCs co‑cultured with NAC. Thus, GGsTOP may promote hPLC migration and participate in the maintenance of the periodontal ligament apparatus via the ROS pathway.


Tanshinone IIA induces apoptosis via inhibition of Wnt/β‑catenin/MGMT signaling in AtT‑20 cells.

  • Zong-Yang Li‎ et al.
  • Molecular medicine reports‎
  • 2017‎

A strategy to suppress the expression of the DNA repair enzyme O6‑methylguanine‑DNA methyltransferase (MGMT) by inhibition of Wnt/β‑catenin signaling may be useful as a novel treatment for pituitary adenoma. Previous studies have reported that Tanshinone IIA (TSA), a major quinone compound isolated from Salvia miltiorrhiza, had antitumor effects. However, whether TSA has antitumor effects against pituitary adenoma and whether the mechanisms are associated with the Wnt/β‑catenin/MGMT pathway remains to be clarified. In the present study, TSA treatment caused apoptosis in AtT‑20 cells in a concentration‑dependent manner, as demonstrated by cell viability reduction, phophatidylserine externalization detected by Annexin V staining and mitochondrial membrane potential disruption detected by JC‑1 staining, which were associated with activation of caspase‑3 and DNA fragmentation detected by TUNEL in AtT‑20 cells. T‑cell factor (TCF)‑lymphoid‑enhancing factor (LEF) reporter activity was determined by dual luciferase reporter assay and the interaction between β‑catenin and TCF‑4 were detected using a co‑immunoprecipitation kit. The results indicated TSA treatment increased β‑catenin phosphorylation, inhibited β‑catenin nuclear translocation, reduced β‑catenin/TCF‑4 complex formation and TCF‑LEF luciferase reporter activity, and subsequently reduced the expression of cyclin D1 and MGMT. Notably, overexpression of MGMT in β‑catenin knock down AtT‑20 cells abrogated the TSA‑mediated effects in AtT‑20 cells. In conclusion, TSA induced apoptosis via inhibition of Wnt/β‑catenin‑dependent MGMT expression, which may provide novel insights into the understanding of the mechanism of the antitumor effects of Salvia miltiorrhiza.


CFHR1 is a potentially downregulated gene in lung adenocarcinoma.

  • Geting Wu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

There is increasing evidence that human complement factor H‑related protein 1 (CFHR1) plays a crucial role in the development of malignant diseases. However, few studies have identified the roles of CFHR1 in the occurrence and prognosis of lung adenocarcinoma (LADC). In the present study, comprehensive bioinformatic analyses of data obtained from the Oncomine platform, UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) demonstrated that CFHR1 expression is significantly reduced in both LADC tissues and cancer cells. The patients presenting with downregulation of CFHR1 had significantly lower overall survival (OS) and post progression survival (PPS) times. Through analysis of the datasets from Gene Expression Omnibus database, we found that the compound actinomycin D promoted CFHR1 expression, further displaying the cytotoxic effect in the LADC cell line A549. In addition, the expression level of CFHR1 in the cisplatin‑resistant LADC cell line CDDP‑R (derived from H460) was also significantly reduced. Our research demonstrated that low levels of CFHR1 are specifically found in LADC samples, and CFHR1 could serve as a potential therapeutic target for this subset of lung cancers. Determination of the detailed roles of CFHR1 in LADC biology could provide insightful information for further investigations.


Role of downregulated ADARB1 in lung squamous cell carcinoma.

  • Xiang Wang‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Non‑small cell lung cancer (NSCLC) is prevalent worldwide. Lung squamous cell carcinoma (LUSC) is one of the main subtypes of NSCLC yet, currently, few biomarkers are available for the diagnosis of LUSC. The present study aimed to investigate the expression and role of adenosine deaminase RNA specific B1 (ADARB1) in lung squamous cell carcinoma (LUSC). Integrative bioinformatics analysis was used to identify the effects of ADARB1 expression on the occurrence and prognosis of LUSC. The expression of ADARB1 was further examined by immunohistochemistry (IHC). Bioinformatics analysis suggested that ADARB1 was downregulated in LUSC, serving as a potential tumor suppressor, and these results were verified by IHC performed on a lung cancer tissue array. Clinical studies suggested that ADARB1 expression and methylation levels were significantly associated with patient characteristics in LUSC. Moreover, ADARB1 global methylation levels were upregulated in LUSC tissues compared with normal lung tissues. Higher methylation levels of cg24063645 were associated with shorter overall survival time of patients with LUSC. A negative correlation was identified between ADARB1 and epidermal growth factor receptor (EGFR) expression in LUSC. Using the Gene Expression Omnibus database, it was suggested that the expression of ADARB1 in LUSC was significantly different compared with that in lung adenocarcinoma. Furthermore, protein‑protein interactions were studied and a biological process annotation analysis was conducted. The present study suggested that ADARB1 was downregulated in LUSC; therefore, ADARB1 may serve as a specific biomarker and a potential therapeutic target for LUSC.


Spectrum construction of differentially expressed circular RNAs in patients with leukoaraiosis and function analysis of differentially expressed genes.

  • Te Mi‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Circular RNAs (circRNAs) are class of endogenous RNAs that have a role in the regulation of gene expression. The present study aimed to investigate the diagnostic value and role of circRNA in the pathogenesis of leukoaraiosis (LA). The present study performed Arraystar Human circRNA Array analysis of 6 samples from LA cases and 6 samples from control cases. Differentially expressed (DE) circRNAs between two samples were identified through fold‑change (>1.5‑fold) screening. Afterwards, based on DE circRNAs, the gene ontology (GO) analysis of upregulated DE genes identified from DE circRNAs demonstrated that DE genes were primarily associated with cellular metabolic processes, membrane‑bound organelles and binding. However, none were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Downregulated DE genes were enriched in cellular localization, cytoplasm and kinase binding. For the KEGG pathways, the downregulated DE genes were primarily associated with the insulin signaling pathway. The results of the present study indicated that the DE genes from differently expressed circRNAs may have an important role in the pathogenesis of LA and may be a novel targfet for further research.


Expression profile of tRNA‑derived fragments and their potential roles in human varicose veins.

  • Chong Yu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Varicose veins (VVs) is a common disease presenting with chronic venous insufficiency. tRNA‑derived fragments (tRFs) are associated with a variety of pathological conditions. However, the functions of tRFs in VVs have not been elucidated to date. The present study aimed to identify the key tRFs and investigate their potential roles in VVs. Small RNA sequencing (RNA‑seq) was performed to investigate the expression of tRFs in tissues of patients with VVs and their matched adjacent normal veins tissues (ANVs). Reverse transcription‑quantitative PCR (RT‑qPCR) was used to confirm the differential expression of tRFs. A total of 13,789 tRFs were identified by small RNA‑seq, including 45 differentially expressed tRFs (DETs), which comprised 14 upregulated and 31 downregulated tRFs in VV tissues compared with ANVs. In addition, DETs were mainly involved in the function of epidermal growth factor receptor and vascular endothelial growth factor receptor signaling pathways in VVs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the target genes of DETs were predominantly involved in Wnt and mitogen‑activated protein kinase (MAPK) signaling pathways, as well as calcium signaling. Additionally, two upregulated tRFs (tRF‑36‑F900BY4D84KRIME and tRF‑23‑87R8WP9IY) and one downregulated tRF (tRF‑40‑86J8WPMN1E8Y7Z2R) were further validated by RT‑qPCR, and a signaling pathway regulation network of their target genes confirmed their involvement in the calcium, Wnt and MAPK signaling pathways. The results of the present study identified three DETs (tRF‑36‑F900BY4D84KRIME, tRF‑23‑87R8WP9IY and tRF‑40‑86J8WPMN1E8Y7Z2R), which may have crucial roles in the occurrence and progression of VVs by regulating Wnt and MAPK signaling, as well as calcium signaling. The present results may provide a basis for further investigation of the functional roles of tRFs in VVs.


Human induced pluripotent stem cell‑derived mesenchymal stem cells alleviate atherosclerosis by modulating inflammatory responses.

  • Hui Shi‎ et al.
  • Molecular medicine reports‎
  • 2018‎

The transplantation of mesenchymal stem cells (MSCs) has been a reported method for alleviating atherosclerosis (AS). Because the availability of bone marrow‑derived MSCs (BM‑MSCs) is limited, the authors used this study to explore the use of a new type of MSC, human induced pluripotent stem cell‑derived MSCs (iPSC‑MSCs), to evaluate whether these cells could alleviate AS. iPSC‑MSCs were intravenously administered to ApoE knock out mice fed on a high‑fat diet (HFD) for 12 weeks. It was reported that systematically administering iPSC‑MSCs clearly reduced the size of plaques. In addition, the numbers of macrophages and lipids in plaques were lower in the HFD + iPSC‑MSCs group than in the HFD group. Furthermore, iPSC‑MSCs attenuated AS‑associated inflammation by decreasing the levels of inflammatory cytokines, such as tumor necrosis factor‑α and interleukin‑6, in serum. In addition, the expression of Notch1 was higher in the HFD group, and injecting iPSC‑MSCs reversed this effect. In conclusion, the current study provides the first evidence indicating that iPSC‑MSCs may be a new optional MSC‑based strategy for treating AS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: