Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Lkb1 maintains Treg cell lineage identity.

  • Di Wu‎ et al.
  • Nature communications‎
  • 2017‎

Regulatory T (Treg) cells are a distinct T-cell lineage characterized by sustained Foxp3 expression and potent suppressor function, but the upstream dominant factors that preserve Treg lineage-specific features are mostly unknown. Here, we show that Lkb1 maintains Treg cell lineage identity by stabilizing Foxp3 expression and enforcing suppressor function. Upon T-cell receptor (TCR) stimulation Lkb1 protein expression is upregulated in Treg cells but not in conventional T cells. Mice with Treg cell-specific deletion of Lkb1 develop a fatal early-onset autoimmune disease, with no Foxp3 expression in most Treg cells. Lkb1 stabilizes Foxp3 expression by preventing STAT4-mediated methylation of the conserved noncoding sequence 2 (CNS2) in the Foxp3 locus. Independent of maintaining Foxp3 expression, Lkb1 programs the expression of a wide spectrum of immunosuppressive genes, through mechanisms involving the augmentation of TGF-β signalling. These findings identify a critical function of Lkb1 in maintaining Treg cell lineage identity.


Distinct genomic landscape of Chinese pediatric acute myeloid leukemia impacts clinical risk classification.

  • Ting Liu‎ et al.
  • Nature communications‎
  • 2022‎

Studies have revealed key genomic aberrations in pediatric acute myeloid leukemia (AML) based on Western populations. It is unknown to what extent the current genomic findings represent populations with different ethnic backgrounds. Here we present the genomic landscape of driver alterations of Chinese pediatric AML and discover previously undescribed genomic aberrations, including the XPO1-TNRC18 fusion. Comprehensively comparing between the Chinese and Western AML cohorts reveal a substantially distinct genomic alteration profile. For example, Chinese AML patients more commonly exhibit mutations in KIT and CSF3R, and less frequently mutated of genes in the RAS signaling pathway. These differences in mutation frequencies lead to the detection of previously uncharacterized co-occurring mutation pairs. Importantly, the distinct driver profile is clinical relevant. We propose a refined prognosis risk classification model which better reflected the adverse event risk for Chinese AML patients. These results emphasize the importance of genetic background in precision medicine.


Infrared driven hot electron generation and transfer from non-noble metal plasmonic nanocrystals.

  • Dongming Zhou‎ et al.
  • Nature communications‎
  • 2020‎

Non-noble metal plasmonic materials, e.g. doped semiconductor nanocrystals, compared to their noble metal counterparts, have shown unique advantages, including broadly tunable plasmon frequency (from visible to infrared) and rich surface chemistry. However, the fate and harvesting of hot electrons from these non-noble metal plasmons have been much less explored. Here we report plasmon driven hot electron generation and transfer from plasmonic metal oxide nanocrystals to surface adsorbed molecules by ultrafast transient absorption spectroscopy. We show unambiguously that under infrared light excitation, hot electron transfers in ultrafast timescale (<50 fs) with an efficiency of 1.4%. The excitation wavelength and fluence dependent study indicates that hot electron transfers right after Landau damping before electron thermalization. We revealed the efficiency-limiting factors and provided improvement strategies. This study paves the way for designing efficient infrared light absorption and photochemical conversion applications based on non-noble metal plasmonic materials.


LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism.

  • Xin-Yu He‎ et al.
  • Nature communications‎
  • 2023‎

Iron metabolism dysregulation is tightly associated with cancer development. But the underlying mechanisms remain poorly understood. Increasing evidence has shown that long noncoding RNAs (lncRNAs) participate in various metabolic processes via integrating signaling pathway. In this study, we revealed one iron-triggered lncRNA, one target of YAP, LncRIM (LncRNA Related to Iron Metabolism, also named ZBED5-AS1 and Loc729013), which effectively links the Hippo pathway to iron metabolism and is largely independent on IRP2. Mechanically, LncRIM directly binds NF2 to inhibit NF2-LATS1 interaction, which causes YAP activation and increases intracellular iron level via DMT1 and TFR1. Additionally, LncRIM-NF2 axis mediates cellular iron metabolism dependent on the Hippo pathway. Clinically, high expression of LncRIM correlates with poor patient survival, suggesting its potential use as a biomarker and therapeutic target. Taken together, our study demonstrated a novel mechanism in which LncRIM-NF2 axis facilitates iron-mediated feedback loop to hyperactivate YAP and promote breast cancer development.


Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins.

  • Cuicui Shen‎ et al.
  • Nature communications‎
  • 2016‎

As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins.


Control of Treg cell homeostasis and immune equilibrium by Lkb1 in dendritic cells.

  • Song Chen‎ et al.
  • Nature communications‎
  • 2018‎

To balance immunity and tolerance, the endogenous pool of Foxp3+ regulatory T (Treg) cells is tightly controlled, but the underlying mechanisms of this control remain poorly understood. Here we show that the number of Treg cells is negatively regulated by the kinase Lkb1 in dendritic cells (DCs). Conditional knockout of the Lkb1 gene in DCs leads to excessive Treg cell expansion in multiple organs and dampens antigen-specific T cell immunity. Lkb1-deficient DCs are capable of enhancing, compared with wild-type DCs, Treg cell proliferation via cell-cell contact involving the IKK/IKBα-independent activation of the NF-κB/OX40L pathway. Intriguingly, treating wild-type mice with lipopolysaccharide selectively depletes Lkb1 protein in DCs, resulting in Treg cell expansion and suppressed inflammatory injury upon subsequent challenge. Loss of Lkb1 does not obviously upregulate proinflammatory molecules expression on DCs. We thus identify Lkb1 as a regulatory switch in DCs for controlling Treg cell homeostasis, immune response and tolerance.


Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella.

  • Ying Shen‎ et al.
  • Nature communications‎
  • 2019‎

Aberrant sperm flagella impair sperm motility and cause male infertility, yet the genes which have been identified in multiple morphological abnormalities of the flagella (MMAF) can only explain the pathogenic mechanisms of MMAF in a small number of cases. Here, we identify and functionally characterize homozygous loss-of-function mutations of QRICH2 in two infertile males with MMAF from two consanguineous families. Remarkably, Qrich2 knock-out (KO) male mice constructed by CRISPR-Cas9 technology present MMAF phenotypes and sterility. To elucidate the mechanisms of Qrich2 functioning in sperm flagellar formation, we perform proteomic analysis on the testes of KO and wild-type mice. Furthermore, in vitro experiments indicate that QRICH2 is involved in sperm flagellar development through stabilizing and enhancing the expression of proteins related to flagellar development. Our findings strongly suggest that the genetic mutations of human QRICH2 can lead to male infertility with MMAF and that QRICH2 is essential for sperm flagellar formation.


CHML promotes liver cancer metastasis by facilitating Rab14 recycle.

  • Tian-Wei Chen‎ et al.
  • Nature communications‎
  • 2019‎

Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis-promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC.


Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression.

  • Jianqin Lu‎ et al.
  • Nature communications‎
  • 2017‎

While chemotherapy delivery by nanocarriers has modestly improved the survival prospects of pancreatic ductal adenocarcinoma (PDAC), additional engagement of the immune response could be game changing. We demonstrate a nano-enabled approach for accomplishing robust anti-PDAC immunity in syngeneic mice through the induction of immunogenic cell death (ICD) as well as interfering in the immunosuppressive indoleamine 2,3-dioxygenase (IDO) pathway. This is accomplished by conjugating the IDO inhibitor, indoximod (IND), to a phospholipid that allows prodrug self-assembly into nanovesicles or incorporation into a lipid bilayer that encapsulates mesoporous silica nanoparticles (MSNP). The porous MSNP interior allows contemporaneous delivery of the ICD-inducing chemotherapeutic agent, oxaliplatin (OX). The nanovesicles plus free OX or OX/IND-MSNP induce effective innate and adaptive anti-PDAC immunity when used in a vaccination approach, direct tumor injection or intravenous biodistribution to an orthotopic PDAC site. Significant tumor reduction or eradication is accomplishable by recruiting cytotoxic T lymphocytes, concomitant with downregulation of Foxp3+ T cells.


Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting.

  • Haimei Wang‎ et al.
  • Nature communications‎
  • 2020‎

The exploration of photoanode materials with high efficiency and stability is the eternal pursuit for the realization of practically solar-driven photoelectrochemical (PEC) water splitting. Here we develop a deficient ternary metal sulfide (CdIn2S4) photoanode, and its PEC performance is significantly enhanced by introducing surface sulfur vacancies, achieving a photocurrent density of 5.73 mA cm-2 at 1.23 V vs. RHE and 1 Sun with an applied bias photon-to-current efficiency of 2.49% at 0.477 V vs. RHE. The experimental characterizations and theoretical calculations highlight the enhanced effect of surface sulfur vacancies on the interfacial charge separation and transfer kinetics, which also demonstrate the restrained surface states distribution and the transformation of active sites after introducing surface sulfur vacancies. This work may inspire more excellent work on developing sulfide-based photoanodes.


METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions.

  • Yuanpei Li‎ et al.
  • Nature communications‎
  • 2022‎

The methyltransferase like 3 (METTL3) has been generally recognized as a nuclear protein bearing oncogenic properties. We find predominantly cytoplasmic METTL3 expression inversely correlates with node metastasis in human cancers. It remains unclear if nuclear METTL3 is functionally distinct from cytosolic METTL3 in driving tumorigenesis and, if any, how tumor cells sense oncogenic insults to coordinate METTL3 functions within these intracellular compartments. Here, we report an acetylation-dependent regulation of METTL3 localization that impacts on metastatic dissemination. We identify an IL-6-dependent positive feedback axis to facilitate nuclear METTL3 functions, eliciting breast cancer metastasis. IL-6, whose mRNA transcript is subjected to METTL3-mediated m6A modification, promotes METTL3 deacetylation and nuclear translocation, thereby inducing global m6A abundance. This deacetylation-mediated nuclear shift of METTL3 can be counterbalanced by SIRT1 inhibition, a process that is further enforced by aspirin treatment, leading to ablated lung metastasis via impaired m6A methylation. Intriguingly, acetylation-mimetic METTL3 mutant reconstitution results in enhanced translation and compromised metastatic potential. Our study identifies an acetylation-dependent regulatory mechanism determining the subcellular localization of METTL3, which may provide mechanistic clues for developing therapeutic strategies to combat breast cancer metastasis.


Microbiota-derived acetate enhances host antiviral response via NLRP3.

  • Junling Niu‎ et al.
  • Nature communications‎
  • 2023‎

Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.


Chromatin accessibility landscape of relapsed pediatric B-lineage acute lymphoblastic leukemia.

  • Han Wang‎ et al.
  • Nature communications‎
  • 2023‎

For around half of the pediatric B-lineage acute lymphoblastic leukemia (B-ALL) patients, the molecular mechanism of relapse remains unclear. To fill this gap in knowledge, here we characterize the chromatin accessibility landscape in pediatric relapsed B-ALL. We observe rewired accessible chromatin regions (ACRs) associated with transcription dysregulation in leukemia cells as compared with normal B-cell progenitors. We show that over a quarter of the ACRs in B-ALL are in quiescent regions with high heterogeneity among B-ALLs. We identify subtype-specific and allele-imbalanced chromatin accessibility by integrating multi-omics data. By characterizing the differential ACRs between diagnosis and relapse in B-ALL, we identify alterations in chromatin accessibility during drug treatment. Further analysis of ACRs associated with relapse free survival leads to the identification of a subgroup of B-ALL which show early relapse. These data provide an advanced and integrative portrait of the importance of chromatin accessibility alterations in tumorigenesis and drug responses.


Single-molecule level control of host-guest interactions in metallocycle-C60 complexes.

  • Jian-Hong Tang‎ et al.
  • Nature communications‎
  • 2019‎

Host-guest interactions are of central importance in many biological and chemical processes. However, the investigation of the formation and decomplexation of host-guest systems at the single-molecule level has been a challenging task. Here we show that the single-molecule conductance of organoplatinum(II) metallocycle hosts can be enhanced by an order of magnitude by the incorporation of a C60 guest molecule. Mechanically stretching the metallocycle-C60 junction with a scanning tunneling microscopy break junction technique causes the release of the C60 guest from the metallocycle, and consequently the conductance switches back to the free-host level. Metallocycle hosts with different shapes and cavity sizes show different degrees of flexibility to accommodate the C60 guest in response to mechanical stretching. DFT calculations provide further insights into the electronic structures and charge transport properties of the molecular junctions based on metallocycles and the metallocycle-C60 complexes.


Realization of vertical metal semiconductor heterostructures via solution phase epitaxy.

  • Xiaoshan Wang‎ et al.
  • Nature communications‎
  • 2018‎

The creation of crystal phase heterostructures of transition metal chalcogenides, e.g., the 1T/2H heterostructures, has led to the formation of metal/semiconductor junctions with low potential barriers. Very differently, post-transition metal chalcogenides are semiconductors regardless of their phases. Herein, we report, based on experimental and simulation results, that alloying between 1T-SnS2 and 1T-WS2 induces a charge redistribution in Sn and W to realize metallic Sn0.5W0.5S2 nanosheets. These nanosheets are epitaxially deposited on surfaces of semiconducting SnS2 nanoplates to form vertical heterostructures. The ohmic-like contact formed at the Sn0.5W0.5S2/SnS2 heterointerface affords rapid transport of charge carriers, and allows for the fabrication of fast photodetectors. Such facile charge transfer, combined with a high surface affinity for acetone molecules, further enables their use as highly selective 100 ppb level acetone sensors. Our work suggests that combining compositional and structural control in solution-phase epitaxy holds promises for solution-processible thin-film optoelectronics and sensors.


Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1.

  • Chen Wang‎ et al.
  • Nature communications‎
  • 2023‎

By lacking de novo purine biosynthesis enzymes, Plasmodium falciparum requires purine nucleoside uptake from host cells. The indispensable nucleoside transporter ENT1 of P. falciparum facilitates nucleoside uptake in the asexual blood stage. Specific inhibitors of PfENT1 prevent the proliferation of P. falciparum at submicromolar concentrations. However, the substrate recognition and inhibitory mechanism of PfENT1 are still elusive. Here, we report cryo-EM structures of PfENT1 in apo, inosine-bound, and inhibitor-bound states. Together with in vitro binding and uptake assays, we identify that inosine is the primary substrate of PfENT1 and that the inosine-binding site is located in the central cavity of PfENT1. The endofacial inhibitor GSK4 occupies the orthosteric site of PfENT1 and explores the allosteric site to block the conformational change of PfENT1. Furthermore, we propose a general "rocker switch" alternating access cycle for ENT transporters. Understanding the substrate recognition and inhibitory mechanisms of PfENT1 will greatly facilitate future efforts in the rational design of antimalarial drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: