Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 75 papers

Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions.

  • Sarah Schulz‎ et al.
  • EMBO reports‎
  • 2012‎

Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity-based search with the suicide inhibitor haemagglutinin (HA)-SUMO-vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin-specific protease-like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l--an essential but distant zebrafish homologue of USPL1--also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low-abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology.


Proteasome Activation by Small Molecules.

  • Yves Leestemaker‎ et al.
  • Cell chemical biology‎
  • 2017‎

Drugs that increase 26S proteasome activity have potential therapeutic applications in the treatment of neurodegenerative diseases. A chemical genetics screen of over 2,750 compounds using a proteasome activity probe as a readout in a high-throughput live-cell fluorescence-activated cell sorting-based assay revealed more than ten compounds that increase proteasome activity, with the p38 MAPK inhibitor PD169316 being one of the most potent ones. Genetic and chemical inhibition of either p38 MAPK, its upstream regulators, ASK1 and MKK6, and downstream target, MK2, enhance proteasome activity. Chemical activation of the 26S proteasome increases PROTAC-mediated and ubiquitin-dependent protein degradation and decreases the levels of both overexpressed and endogenous α-synuclein, without affecting the overall protein turnover. In addition, survival of cells overexpressing toxic α-synuclein assemblies is increased in the presence of p38 MAPK inhibitors. These findings highlight the potential of activation of 26S proteasome activity and that this can be achieved through multiple mechanisms by distinct molecules.


Modulation of ABA Signaling by Altering VxGΦL Motif of PP2Cs in Oryza sativa.

  • Seungsu Han‎ et al.
  • Molecular plant‎
  • 2017‎

The abscisic acid (ABA) signaling pathway is regulated by clade A type 2C protein phosphatases (PP2CAs) in plants. In the presence of ABA, PP2Cs release stress/ABA-activated protein kinases by binding to ABA-bound receptors (PYL/RCARs) for activation. Although the wedging tryptophan in PP2Cs is critical in the interaction with PYL/RCARs in Arabidopsis and rice, it remains elusive as to how other interface regions are involved in the interaction. Here, we report the identification of a conserved region on PP2Cs, termed the VxGΦL motif, which modulates the interaction with PYL/RCARs through its second and fourth residues. The effects of the second and fourth residues on the interaction of OsPP2C50 with several OsPYL/RCAR proteins were investigated by systematic mutagenesis. One OsPP2C50 mutant, VFGML ("FM") mutant, lowered the affinity to OsPYL/RCAR3 by ∼15-fold in comparison with the wild-type. Comparison of the crystal structures of wild-type OsPP2C50:ABA:OsPYL/RCAR3 with those composed of FM mutant revealed local conformational changes near the VxGΦL motif, further supported by hydrogen-deuterium exchange mass spectrometry. In rice protoplasts, ABA signaling was altered by mutations in the VxGΦL motif. Transgenic Arabidopsis plants overexpressing OsPP2C50 and OsPP2C50FM showed altered ABA sensitivity. Taken together, the VxGΦL motif of PP2Cs appears to modulate the affinity of PP2Cs with PYL/RCARs and thus likely to alter the ABA signaling, leading to the differential sensitivity to ABA in planta.


Development of a hypersensitive periodate-cleavable amino acid that is methionine- and disulfide-compatible and its application in MHC exchange reagents for T cell characterisation.

  • Alessia Amore‎ et al.
  • Chembiochem : a European journal of chemical biology‎
  • 2013‎

Incorporation of cleavable linkers into peptides and proteins is of particular value in the study of biological processes. Here we describe the synthesis of a cleavable linker that is hypersensitive to oxidative cleavage as the result of the periodate reactivity of a vicinal amino alcohol moiety. Two strategies directed towards the synthesis of a building block suitable for solid-phase peptide synthesis were developed: a chemoenzymatic route, involving L-threonine aldolase, and an enantioselective chemical route; these led to α,γ-diamino-β-hydroxybutanoic acids in diastereoisomerically mixed and enantiopure forms, respectively. Incorporation of the 1,2-amino alcohol linker into the backbone of a peptide generated a conditional peptide that was rapidly cleaved at very low concentrations of sodium periodate. This cleavable peptide ligand was applied in the generation of MHC exchange reagents for the detection of antigen-specific T cells in peripheral blood cells. The extremely low concentration of periodate required to trigger MHC peptide exchange allowed the co-oxidation of methionine and disulfide residues to be avoided. Conditional MHC reagents hypersensitive to periodate can now be applied without limitations when UV irradiation is undesired or less practical.


Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies.

  • Kirby N Swatek‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

In response to viral infection, cells mount a potent inflammatory response that relies on ISG15 and ubiquitin posttranslational modifications. Many viruses use deubiquitinases and deISGylases that reverse these modifications and antagonize host signaling processes. We here reveal that the leader protease, Lbpro, from foot-and-mouth disease virus (FMDV) targets ISG15 and to a lesser extent, ubiquitin in an unprecedented manner. Unlike canonical deISGylases that hydrolyze the isopeptide linkage after the C-terminal GlyGly motif, Lbpro cleaves the peptide bond preceding the GlyGly motif. Consequently, the GlyGly dipeptide remains attached to the substrate Lys, and cleaved ISG15 is rendered incompetent for reconjugation. A crystal structure of Lbpro bound to an engineered ISG15 suicide probe revealed the molecular basis for ISG15 proteolysis. Importantly, anti-GlyGly antibodies, developed for ubiquitin proteomics, are able to detect Lbpro cleavage products during viral infection. This opens avenues for infection detection of FMDV based on an immutable, host-derived epitope.


Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies.

  • Katrin Juenemann‎ et al.
  • Scientific reports‎
  • 2018‎

Many neurodegenerative diseases, such as Huntington's disease, are hallmarked by the formation of intracellular inclusion bodies (IBs) that are decorated with ubiquitin, proteasomes and chaperones. The apparent enrichment of ubiquitin and components involved in protein quality control at IBs suggests local ubiquitin-dependent enzymatic activity. In this study, we examine recruitment of ubiquitin to IBs of polyglutamine-expanded huntingtin fragments (mHtt) by using synthesized TAMRA-labeled ubiquitin moieties. We show that intracellular TAMRA-ubiquitin is dynamic at mHtt IBs and is incorporated into poly-ubiquitin chains of intracellular substrates, such as mHtt, in a conjugation-dependent manner. Furthermore, we report that mHtt IBs recruit catalytically active enzymes involved in (de)-ubiquitination processes based on novel activity-based probes. However, we also find that the overexpression of the GFP-ubiquitin reporter, unlike the endogenous ubiquitin and TAMRA-ubiquitin, becomes irreversibly sequestered as a ring-like structure around the mHtt IBs, suggesting a methodical disadvantage of GFP-tagged ubiquitin. Our data provide supportive evidence for dynamic recruitment of ubiquitin and ubiquitin (de)-conjugating activity at mHtt initiated IBs.


Structural basis of the specificity of USP18 toward ISG15.

  • Anja Basters‎ et al.
  • Nature structural & molecular biology‎
  • 2017‎

Protein modification by ubiquitin and ubiquitin-like modifiers (Ubls) is counteracted by ubiquitin proteases and Ubl proteases, collectively termed DUBs. In contrast to other proteases of the ubiquitin-specific protease (USP) family, USP18 shows no reactivity toward ubiquitin but specifically deconjugates the interferon-induced Ubl ISG15. To identify the molecular determinants of this specificity, we solved the crystal structures of mouse USP18 alone and in complex with mouse ISG15. USP18 was crystallized in an open and a closed conformation, thus revealing high flexibility of the enzyme. Structural data, biochemical and mutational analysis showed that only the C-terminal ubiquitin-like domain of ISG15 is recognized and essential for USP18 activity. A critical hydrophobic patch in USP18 interacts with a hydrophobic region unique to ISG15, thus providing evidence that USP18's ISG15 specificity is mediated by a small interaction interface. Our results may provide a structural basis for the development of new drugs modulating ISG15 linkage.


Mycobacterium tuberculosis Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates.

  • Susan Zhang‎ et al.
  • mBio‎
  • 2017‎

The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M. tuberculosis, an observation that led us to hypothesize that PafA may need alternative sources of Pup. Here, we show that PafA can move Pup from one proteasome substrate, inositol 1-phosphate synthetase (Ino1), to two different proteins, malonyl coenzyme A (CoA)-acyl carrier protein transacylase (FabD) and lonely guy (Log). This apparent "transpupylation" reaction required a previously unrecognized depupylase activity in PafA, and, surprisingly, this depupylase activity was much more efficient than the activity of the dedicated depupylase Dop (deamidase of Pup). Thus, PafA can potentially use both newly synthesized Pup and recycled Pup to doom proteins for degradation.IMPORTANCE Unlike eukaryotes, which contain hundreds of ubiquitin ligases, Pup-containing bacteria appear to have a single ligase to pupylate dozens if not hundreds of different proteins. The observation that PafA can depupylate and transpupylate in vitro offers new insight into how protein stability is regulated in proteasome-bearing bacteria. Importantly, PafA and the dedicated depupylase Dop are each required for the full virulence of Mycobacterium tuberculosis Thus, inhibition of both enzymes may be extremely attractive for the development of therapeutics against tuberculosis.


Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos.

  • Raymond Kooij‎ et al.
  • Journal of the American Chemical Society‎
  • 2020‎

Many reagents have emerged to study the function of specific enzymes in vitro. On the other hand, target specific reagents are scarce or need improvement, allowing investigations of the function of individual enzymes in their native cellular context. Here we report the development of a target-selective fluorescent small-molecule activity-based DUB probe that is active in live cells and an in vivo animal model. The probe labels active ubiquitin carboxy-terminal hydrolase L1 (UCHL1), also known as neuron-specific protein PGP9.5 (PGP9.5) and Parkinson disease 5 (PARK5), a DUB active in neurons that constitutes 1 to 2% of the total brain protein. UCHL1 variants have been linked with neurodegenerative disorders Parkinson's and Alzheimer's diseases. In addition, high levels of UCHL1 also correlate often with cancer and especially metastasis. The function of UCHL1 activity or its role in cancer and neurodegenerative disease is poorly understood and few UCHL1-specific activity tools exist. We show that the reagents reported here are specific to UCHL1 over all other DUBs detectable by competitive activity-based protein profiling and by mass spectrometry. Our cell-penetrable probe, which contains a cyanimide reactive moiety, binds to the active-site cysteine residue of UCHL1 in an activity-dependent manner. Its use is demonstrated by the fluorescent labeling of active UCHL1 both in vitro and in live cells. We furthermore show that this probe can selectively and spatiotemporally report UCHL1 activity during the development of zebrafish embryos. Our results indicate that our probe has potential applications as a diagnostic tool for diseases with perturbed UCHL1 activity.


Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection.

  • Donghyuk Shin‎ et al.
  • eLife‎
  • 2020‎

Legionella pneumophila causes a severe pneumonia known as Legionnaires' disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1'), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host-pathogen interactions.


Strategy for Development of Site-Specific Ubiquitin Antibodies.

  • Ila van Kruijsbergen‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Protein ubiquitination is a key post-translational modification regulating a wide range of biological processes. Ubiquitination involves the covalent attachment of the small protein ubiquitin to a lysine of a protein substrate. In addition to its well-established role in protein degradation, protein ubiquitination plays a role in protein-protein interactions, DNA repair, transcriptional regulation, and other cellular functions. Understanding the mechanisms and functional relevance of ubiquitin as a signaling system requires the generation of antibodies or alternative reagents that specifically detect ubiquitin in a site-specific manner. However, in contrast to other post-translational modifications such as acetylation, phosphorylation, and methylation, the instability and size of ubiquitin-76 amino acids-complicate the preparation of suitable antigens and the generation antibodies detecting such site-specific modifications. As a result, the field of ubiquitin research has limited access to specific antibodies. This severely hampers progress in understanding the regulation and function of site-specific ubiquitination in many areas of biology, specifically in epigenetics and cancer. Therefore, there is a high demand for antibodies recognizing site-specific ubiquitin modifications. Here we describe a strategy for the development of site-specific ubiquitin antibodies. Based on a recently developed antibody against site-specific ubiquitination of histone H2B, we provide detailed protocols for chemical synthesis methods for antigen preparation and discuss considerations for screening and quality control experiments.


Nedd8 hydrolysis by UCH proteases in Plasmodium parasites.

  • Maryia Karpiyevich‎ et al.
  • PLoS pathogens‎
  • 2019‎

Plasmodium parasites are the causative agents of malaria, a disease with wide public health repercussions. Increasing drug resistance and the absence of a vaccine make finding new chemotherapeutic strategies imperative. Components of the ubiquitin and ubiquitin-like pathways have garnered increased attention as novel targets given their necessity to parasite survival. Understanding how these pathways are regulated in Plasmodium and identifying differences to the host is paramount to selectively interfering with parasites. Here, we focus on Nedd8 modification in Plasmodium falciparum, given its central role to cell division and DNA repair, processes critical to Plasmodium parasites given their unusual cell cycle and requirement for refined repair mechanisms. By applying a functional chemical approach, we show that deNeddylation is controlled by a different set of enzymes in the parasite versus the human host. We elucidate the molecular determinants of the unusual dual ubiquitin/Nedd8 recognition by the essential PfUCH37 enzyme and, through parasite transgenics and drug assays, determine that only its ubiquitin activity is critical to parasite survival. Our experiments reveal interesting evolutionary differences in how neddylation is controlled in higher versus lower eukaryotes, and highlight the Nedd8 pathway as worthy of further exploration for therapeutic targeting in antimalarial drug design.


Structural mechanism for regulation of Rab7 by site-specific monoubiquitination.

  • Jaeeun Jung‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Site-specific ubiquitination can regulate the functions of Rab proteins in membrane trafficking. Previously we showed that site-specific monoubiquitination on Rab5 downregulates its function. Rab7 acts in the downstream of Rab5. Although site-specific ubiquitination of Rab7 can affect its function, it remains elusive how the ubiquitination is involved in modulation of the function of Rab7 at molecular level. Here, we report molecular basis for the regulation of Rab7 by site-specific monoubiquitination. Rab7 was predominantly monoubiquitinated at multiple sites in the membrane fraction of cultured cells. Two major ubiquitination sites (K191 and K194), identified by mutational analysis with single K mutants, were responsible for membrane localization of monoubiquitinated Rab7. Using small-angle X-ray scattering, we derived structural models of site-specifically monoubiquitinated Rab7 in solution. Structural analysis combined with molecular dynamics simulation corroborated that the ubiquitin moieties on K191 and K194 are key determinants for exclusion of Rab7 from the endosomal membrane. Ubiquitination on the two major sites apparently mitigated colocalization of Rab7 with ORF3a of SARS-CoV-2, potentially deterring the egression of SARS-CoV-2. Our results establish that the regulatory effects of a Rab protein through site-specific monoubiquitination are commonly observed among Rab GTPases while the ubiquitination sites differ in each Rab protein.


Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex.

  • Román González-Prieto‎ et al.
  • Cell reports‎
  • 2021‎

In contrast to our extensive knowledge on covalent small ubiquitin-like modifier (SUMO) target proteins, we are limited in our understanding of non-covalent SUMO-binding proteins. We identify interactors of different SUMO isoforms-monomeric SUMO1, monomeric SUMO2, or linear trimeric SUMO2 chains-using a mass spectrometry-based proteomics approach. We identify 379 proteins that bind to different SUMO isoforms, mainly in a preferential manner. Interestingly, XRCC4 is the only DNA repair protein in our screen with a preference for SUMO2 trimers over mono-SUMO2, as well as the only protein in our screen that belongs to the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. A SUMO interaction motif (SIM) in XRCC4 regulates its recruitment to sites of DNA damage and phosphorylation of S320 by DNA-PKcs. Our data highlight the importance of non-covalent and covalent sumoylation for DNA double-strand break repair via the NHEJ pathway and provide a resource of SUMO isoform interactors.


K27-Linked Diubiquitin Inhibits UCHL3 via an Unusual Kinetic Trap.

  • Gabriëlle B A van Tilburg‎ et al.
  • Cell chemical biology‎
  • 2021‎

Functional analysis of lysine 27-linked ubiquitin chains (K27Ub) is difficult due to the inability to make them through enzymatic methods and due to a lack of model tools and substrates. Here we generate a series of ubiquitin (Ub) tools to study how the deubiquitinase UCHL3 responds to K27Ub chains in comparison to lysine 63-linked chains and mono-Ub. From a crystal structure of a complex between UCHL3 and synthetic K27Ub2, we unexpectedly discover that free K27Ub2 and K27Ub2-conjugated substrates are natural inhibitors of UCHL3. Using our Ub tools to profile UCHL3's activity, we generate a quantitative kinetic model of the inhibitory mechanism and we find that K27Ub2 can inhibit UCHL3 covalently, by binding to its catalytic cysteine, and allosterically, by locking its catalytic loop tightly in place. Based on this inhibition mechanism, we propose that UCHL3 and K27Ub chains likely sense and regulate each other in cells.


Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes.

  • Sabine Schipper-Krom‎ et al.
  • Frontiers in molecular biosciences‎
  • 2019‎

The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.


Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2.

  • Theresa Klemm‎ et al.
  • The EMBO journal‎
  • 2020‎

The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.


OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis.

  • Tycho E T Mevissen‎ et al.
  • Cell‎
  • 2013‎

Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1' and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates.


Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G.

  • Danny D Sahtoe‎ et al.
  • Molecular cell‎
  • 2015‎

Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity.


Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

  • Seungsu Han‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: