Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Modulation of ABA Signaling by Altering VxGΦL Motif of PP2Cs in Oryza sativa.

  • Seungsu Han‎ et al.
  • Molecular plant‎
  • 2017‎

The abscisic acid (ABA) signaling pathway is regulated by clade A type 2C protein phosphatases (PP2CAs) in plants. In the presence of ABA, PP2Cs release stress/ABA-activated protein kinases by binding to ABA-bound receptors (PYL/RCARs) for activation. Although the wedging tryptophan in PP2Cs is critical in the interaction with PYL/RCARs in Arabidopsis and rice, it remains elusive as to how other interface regions are involved in the interaction. Here, we report the identification of a conserved region on PP2Cs, termed the VxGΦL motif, which modulates the interaction with PYL/RCARs through its second and fourth residues. The effects of the second and fourth residues on the interaction of OsPP2C50 with several OsPYL/RCAR proteins were investigated by systematic mutagenesis. One OsPP2C50 mutant, VFGML ("FM") mutant, lowered the affinity to OsPYL/RCAR3 by ∼15-fold in comparison with the wild-type. Comparison of the crystal structures of wild-type OsPP2C50:ABA:OsPYL/RCAR3 with those composed of FM mutant revealed local conformational changes near the VxGΦL motif, further supported by hydrogen-deuterium exchange mass spectrometry. In rice protoplasts, ABA signaling was altered by mutations in the VxGΦL motif. Transgenic Arabidopsis plants overexpressing OsPP2C50 and OsPP2C50FM showed altered ABA sensitivity. Taken together, the VxGΦL motif of PP2Cs appears to modulate the affinity of PP2Cs with PYL/RCARs and thus likely to alter the ABA signaling, leading to the differential sensitivity to ABA in planta.


Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection.

  • Donghyuk Shin‎ et al.
  • eLife‎
  • 2020‎

Legionella pneumophila causes a severe pneumonia known as Legionnaires' disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1'), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host-pathogen interactions.


Nedd8 hydrolysis by UCH proteases in Plasmodium parasites.

  • Maryia Karpiyevich‎ et al.
  • PLoS pathogens‎
  • 2019‎

Plasmodium parasites are the causative agents of malaria, a disease with wide public health repercussions. Increasing drug resistance and the absence of a vaccine make finding new chemotherapeutic strategies imperative. Components of the ubiquitin and ubiquitin-like pathways have garnered increased attention as novel targets given their necessity to parasite survival. Understanding how these pathways are regulated in Plasmodium and identifying differences to the host is paramount to selectively interfering with parasites. Here, we focus on Nedd8 modification in Plasmodium falciparum, given its central role to cell division and DNA repair, processes critical to Plasmodium parasites given their unusual cell cycle and requirement for refined repair mechanisms. By applying a functional chemical approach, we show that deNeddylation is controlled by a different set of enzymes in the parasite versus the human host. We elucidate the molecular determinants of the unusual dual ubiquitin/Nedd8 recognition by the essential PfUCH37 enzyme and, through parasite transgenics and drug assays, determine that only its ubiquitin activity is critical to parasite survival. Our experiments reveal interesting evolutionary differences in how neddylation is controlled in higher versus lower eukaryotes, and highlight the Nedd8 pathway as worthy of further exploration for therapeutic targeting in antimalarial drug design.


Structural mechanism for regulation of Rab7 by site-specific monoubiquitination.

  • Jaeeun Jung‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Site-specific ubiquitination can regulate the functions of Rab proteins in membrane trafficking. Previously we showed that site-specific monoubiquitination on Rab5 downregulates its function. Rab7 acts in the downstream of Rab5. Although site-specific ubiquitination of Rab7 can affect its function, it remains elusive how the ubiquitination is involved in modulation of the function of Rab7 at molecular level. Here, we report molecular basis for the regulation of Rab7 by site-specific monoubiquitination. Rab7 was predominantly monoubiquitinated at multiple sites in the membrane fraction of cultured cells. Two major ubiquitination sites (K191 and K194), identified by mutational analysis with single K mutants, were responsible for membrane localization of monoubiquitinated Rab7. Using small-angle X-ray scattering, we derived structural models of site-specifically monoubiquitinated Rab7 in solution. Structural analysis combined with molecular dynamics simulation corroborated that the ubiquitin moieties on K191 and K194 are key determinants for exclusion of Rab7 from the endosomal membrane. Ubiquitination on the two major sites apparently mitigated colocalization of Rab7 with ORF3a of SARS-CoV-2, potentially deterring the egression of SARS-CoV-2. Our results establish that the regulatory effects of a Rab protein through site-specific monoubiquitination are commonly observed among Rab GTPases while the ubiquitination sites differ in each Rab protein.


Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S.

  • Tom J Harryvan‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown.


K27-Linked Diubiquitin Inhibits UCHL3 via an Unusual Kinetic Trap.

  • Gabriëlle B A van Tilburg‎ et al.
  • Cell chemical biology‎
  • 2021‎

Functional analysis of lysine 27-linked ubiquitin chains (K27Ub) is difficult due to the inability to make them through enzymatic methods and due to a lack of model tools and substrates. Here we generate a series of ubiquitin (Ub) tools to study how the deubiquitinase UCHL3 responds to K27Ub chains in comparison to lysine 63-linked chains and mono-Ub. From a crystal structure of a complex between UCHL3 and synthetic K27Ub2, we unexpectedly discover that free K27Ub2 and K27Ub2-conjugated substrates are natural inhibitors of UCHL3. Using our Ub tools to profile UCHL3's activity, we generate a quantitative kinetic model of the inhibitory mechanism and we find that K27Ub2 can inhibit UCHL3 covalently, by binding to its catalytic cysteine, and allosterically, by locking its catalytic loop tightly in place. Based on this inhibition mechanism, we propose that UCHL3 and K27Ub chains likely sense and regulate each other in cells.


Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2.

  • Theresa Klemm‎ et al.
  • The EMBO journal‎
  • 2020‎

The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.


Total Chemical Synthesis of LC3A and LC3B Activity-Based Probes.

  • Yara Huppelschoten‎ et al.
  • Biomedicines‎
  • 2023‎

Autophagy is a conserved cellular process involved in the degradation of intercellular materials. During this process, double-membrane vesicles called autophagosomes engulf cytoplasmic components ready for degradation. A key component in the formation of autophagosomes are the autophagy-related (Atg) proteins, including microtubule-associated protein light chain 3A (LC3A) and 3B (LC3B). After the C-terminus of LC3 is conjugated to a phospholipid, it promotes the elongation of the phagosome and provides a docking station for the delivery of proteins ready for degradation. Since dysregulation of the autophagy pathway has been associated with a variety of human diseases, components of this process have been considered as potential therapeutic targets. However, the mechanistic details of LC3-specific ligases and deconjugation enzymes are far from unraveled and chemical tools for activity profiling could aid in affording more insights into this process. Herein, we describe a native chemical ligation approach for the synthesis of two LC3 activity-based probes (ABPs). Initial studies show that the probes covalently interact with the cysteine protease ATG4B, showcasing the potential of these probes to unravel mechanistic and structural details.


Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

  • Seungsu Han‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.


Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir.

  • Ho Sing Lo‎ et al.
  • ACS central science‎
  • 2021‎

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.


Sequence preference and structural heterogeneity of BZ junctions.

  • Doyoun Kim‎ et al.
  • Nucleic acids research‎
  • 2018‎

BZ junctions, which connect B-DNA to Z-DNA, are necessary for local transformation of B-DNA to Z-DNA in the genome. However, the limited information on the junction-forming sequences and junction structures has led to a lack of understanding of the structural diversity and sequence preferences of BZ junctions. We determined three crystal structures of BZ junctions with diverse sequences followed by spectroscopic validation of DNA conformation. The structural features of the BZ junctions were well conserved regardless of sequences via the continuous base stacking through B-to-Z DNA with A-T base extrusion. However, the sequence-dependent structural heterogeneity of the junctions was also observed in base step parameters that are correlated with steric constraints imposed during Z-DNA formation. Further, circular dichroism and fluorescence-based analysis of BZ junctions revealed that a base extrusion was only found at the A-T base pair present next to a stable dinucleotide Z-DNA unit. Our findings suggest that Z-DNA formation in the genome is influenced by the sequence preference for BZ junctions.


Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination.

  • Sissy Kalayil‎ et al.
  • Nature‎
  • 2018‎

Conventional ubiquitination regulates key cellular processes by catalysing the ATP-dependent formation of an isopeptide bond between ubiquitin (Ub) and primary amines in substrate proteins 1 . Recently, the SidE family of bacterial effector proteins (SdeA, SdeB, SdeC and SidE) from pathogenic Legionella pneumophila were shown to use NAD+ to mediate phosphoribosyl-linked ubiquitination of serine residues in host proteins2, 3. However, the molecular architecture of the catalytic platform that enables this complex multistep process remains unknown. Here we describe the structure of the catalytic core of SdeA, comprising mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains, and shed light on the activity of two distinct catalytic sites for serine ubiquitination. The mART catalytic site is composed of an α-helical lobe (AHL) that, together with the mART core, creates a chamber for NAD+ binding and ADP-ribosylation of ubiquitin. The catalytic site in the PDE domain cleaves ADP-ribosylated ubiquitin to phosphoribosyl ubiquitin (PR-Ub) and mediates a two-step PR-Ub transfer reaction: first to a catalytic histidine 277 (forming a transient SdeA H277-PR-Ub intermediate) and subsequently to a serine residue in host proteins. Structural analysis revealed a substrate binding cleft in the PDE domain, juxtaposed with the catalytic site, that is essential for positioning serines for ubiquitination. Using degenerate substrate peptides and newly identified ubiquitination sites in RTN4B, we show that disordered polypeptides with hydrophobic residues surrounding the target serine residues are preferred substrates for SdeA ubiquitination. Infection studies with L. pneumophila expressing substrate-binding mutants of SdeA revealed that substrate ubiquitination, rather than modification of the cellular ubiquitin pool, determines the pathophysiological effect of SdeA during acute bacterial infection.


Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ).

  • Doyoun Kim‎ et al.
  • Nucleic acids research‎
  • 2014‎

Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the β-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the β-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate.


Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation.

  • Sagar Bhogaraju‎ et al.
  • Nature‎
  • 2019‎

The family of bacterial SidE enzymes catalyses phosphoribosyl-linked serine ubiquitination and promotes infectivity of Legionella pneumophila, a pathogenic bacteria that causes Legionnaires' disease1-3. SidE enzymes share the genetic locus with the Legionella effector SidJ that spatiotemporally opposes the toxicity of these enzymes in yeast and mammalian cells, through a mechanism that is currently unknown4-6. Deletion of SidJ leads to a substantial defect in the growth of Legionella in both its natural hosts (amoebae) and in mouse macrophages4,5. Here we demonstrate that SidJ is a glutamylase that modifies the catalytic glutamate in the mono-ADP ribosyl transferase domain of the SdeA, thus blocking the ubiquitin ligase activity of SdeA. The glutamylation activity of SidJ requires interaction with the eukaryotic-specific co-factor calmodulin, and can be regulated by intracellular changes in Ca2+ concentrations. The cryo-electron microscopy structure of SidJ in complex with human apo-calmodulin revealed the architecture of this heterodimeric glutamylase. We show that, in cells infected with L. pneumophila, SidJ mediates the glutamylation of SidE enzymes on the surface of vacuoles that contain Legionella. We used quantitative proteomics to uncover multiple host proteins as putative targets of SidJ-mediated glutamylation. Our study reveals the mechanism by which SidE ligases are inhibited by a SidJ-calmodulin glutamylase, and opens avenues for exploring an understudied protein modification (glutamylation) in eukaryotes.


Inhibiting UCH-L5: Rational Design of a Cyclic Ubiquitin-Based Peptide Inhibitor.

  • Dharjath S Hameed‎ et al.
  • Frontiers in molecular biosciences‎
  • 2022‎

The ubiquitin-proteasome system is an essential regulator of many cellular processes including controlling protein homeostasis. The degradation of proteins by the multi-subunit proteasome complex is tightly regulated through a series of checkpoints, amongst which are a set of deubiquitinating proteases (DUBs). The proteasome-associated DUBs, UCH-L5 (Ubiquitin carboxyl-terminal hydrolase isozyme L5) and USP14 (Ubiquitin-specific protease 14), and the integral-DUB in the proteasome, Rpn11, is known to regulate proteasomal degradation by deubiquitination of distinct substrates. Although selective inhibitors for USP14 and Rpn11 have been recently developed, there are no known inhibitors that selectively bind to UCH-L5. The X-ray structure of the Ubiquitin (Ub) bound to UCH-L5 shows a β-sheet hairpin in Ub that contains a crucial hydrophobic patch involved in the interaction with UCH-L5. Herein, we designed and developed both a Ub sequence-based linear- and cyclic- β-sheet hairpin peptide that was found to preferably inhibit UCH-L5. We show that these peptides have low micromolar IC50 values and the cyclic peptide competes with the activity-based UbVME (Ubiquitin-Vinyl-Methyl-Ester) probe for UCH-L5, binding in a concentration-dependent manner. We further establish the selectivity profile of the cyclic peptide for UCH-L5 compared to other members of the UCH-DUB family and other cysteine DUBs in cell lysate. Furthermore, the cyclic peptide infiltrated cells resulting in the accumulation of polyUb chains, and was found to be non-toxic at the concentrations used here. Taken together, our data suggest that the cyclic peptide permeates the cell membrane, inhibits UCH-L5 by possibly blocking its deubiquitinating function, and contributes to the accumulation of polyubiquitinated substrates. The implications of inhibiting UCH-L5 in the context of the 26S proteasome render it an attractive candidate for further development as a potential selective inhibitor for therapeutic purposes.


Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease.

  • Miklós Békés‎ et al.
  • Molecular cell‎
  • 2016‎

Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections.


Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB.

  • Donghyuk Shin‎ et al.
  • Molecular cell‎
  • 2020‎

The family of bacterial SidE enzymes catalyzes non-canonical phosphoribosyl-linked (PR) serine ubiquitination and promotes infectivity of Legionella pneumophila. Here, we describe identification of two bacterial effectors that reverse PR ubiquitination and are thus named deubiquitinases for PR ubiquitination (DUPs; DupA and DupB). Structural analyses revealed that DupA and SidE ubiquitin ligases harbor a highly homologous catalytic phosphodiesterase (PDE) domain. However, unlike SidE ubiquitin ligases, DupA displays increased affinity to PR-ubiquitinated substrates, which allows DupA to cleave PR ubiquitin from substrates. Interfering with DupA-ubiquitin binding switches its activity toward SidE-type ligase. Given the high affinity of DupA to PR-ubiquitinated substrates, we exploited a catalytically inactive DupA mutant to trap and identify more than 180 PR-ubiquitinated host proteins in Legionella-infected cells. Proteins involved in endoplasmic reticulum (ER) fragmentation and membrane recruitment to Legionella-containing vacuoles (LCV) emerged as major SidE targets. The global map of PR-ubiquitinated substrates provides critical insights into host-pathogen interactions during Legionella infection.


Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler.

  • Joanna Liwocha‎ et al.
  • Nature chemical biology‎
  • 2021‎

Virtually all aspects of cell biology are regulated by a ubiquitin code where distinct ubiquitin chain architectures guide the binding events and itineraries of modified substrates. Various combinations of E2 and E3 enzymes accomplish chain formation by forging isopeptide bonds between the C terminus of their transiently linked donor ubiquitin and a specific nucleophilic amino acid on the acceptor ubiquitin, yet it is unknown whether the fundamental feature of most acceptors-the lysine side chain-affects catalysis. Here, use of synthetic ubiquitins with non-natural acceptor site replacements reveals that the aliphatic side chain specifying reactive amine geometry is a determinant of the ubiquitin code, through unanticipated and complex reliance of many distinct ubiquitin-carrying enzymes on a canonical acceptor lysine.


Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5.

  • Laura A Hehl‎ et al.
  • Nature chemical biology‎
  • 2023‎

Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.


Neutron-encoded diubiquitins to profile linkage selectivity of deubiquitinating enzymes.

  • Bianca D M van Tol‎ et al.
  • Nature communications‎
  • 2023‎

Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: