Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Oseltamivir-resistant pandemic (H1N1) 2009 virus, South Korea.

  • Hwajung Yi‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

To identify oseltamivir resistance, we analyzed neuraminidase H275Y mutations in samples from 10 patients infected with pandemic (H1N1) 2009 virus in South Korea who had influenza that was refractory to antiviral treatment with this drug. A neuraminidase I117M mutation that might influence oseltamivir susceptibility was detected in sequential specimens from 1 patient.


Pathogenesis and Chronologic Localization of the Human Influenza A (H1N1) Virus in Cotton Rats.

  • Donghyok Kwon‎ et al.
  • Osong public health and research perspectives‎
  • 2011‎

We aimed to evaluate the pathogenesis and chronologic localization of human influenza A (H1N1) virus in experimentally infected cotton rats.


Genomic Surveillance of SARS-CoV-2: Distribution of Clades in the Republic of Korea in 2020.

  • Ae Kyung Park‎ et al.
  • Osong public health and research perspectives‎
  • 2021‎

Since a novel beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019, there has been a rapid global spread of the virus. Genomic surveillance was conducted on samples isolated from infected individuals to monitor the spread of genetic variants of SARS-CoV-2 in Korea. The Korea Disease Control and Prevention Agency performed whole genome sequencing of SARS-CoV-2 in Korea for 1 year (January 2020 to January 2021). A total of 2,488 SARS-CoV-2 cases were sequenced (including 648 cases from abroad). Initially, the prevalent clades of SARS-CoV-2 were the S and V clades, however, by March 2020, GH clade was the most dominant. Only international travelers were identified as having G or GR clades, and since the first variant 501Y.V1 was identified (from a traveler from the United Kingdom on December 22nd, 2020), a total of 27 variants of 501Y.V1, 501Y.V2, and 484K.V2 have been classified (as of January 25th, 2021). The results in this study indicated that quarantining of travelers entering Korea successfully prevented dissemination of the SARS-CoV-2 variants in Korea.


Comparison of the Prevalence of Antibodies to SARS-CoV-2 in 9954 Recruits in the Korean Army Training Center with the General Korean Population of Equivalent Age Between September and November, 2020.

  • Kwang Ho Mun‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2022‎

BACKGROUND Understanding the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be a useful tool when studying spread of the disease. This study aimed to compare the prevalence of antibodies to SARS-CoV-2 in 9954 recruits in the Korean Army Training Center with the general Korean population age <30 years between September and November, 2020. MATERIAL AND METHODS At the Korean Army Training Center, samples were taken from 9954 men from September to November, 2020. Participants were randomly enlisted healthy adult men. The data were compared with 4,205,265 samples from the Korean general population. Men age <30 years were used, as this is similar to the age range of the military recruits. RESULTS Among military recruits, 31 subjects (0.31%) were positive for the antibody, while the Korean male population had 3757 (0.09%) positive individuals. Among these 31 men, 13 were previously diagnosed by PCR, while 18 (58.06%) had no history related to the disease. Positive military recruits were mostly from 2 regional clusters. The first cluster was Daegu and Gyeongbuk areas (1.97% and 0.80%, respectively), which had an outbreak in March, 2020. The second cluster was Gyeonggi and Seoul, or capital areas (0.23% and 0.20%, respectively), which currently has high PCR positivity. Overall, seroprevalence was 3.49 times higher in study subjects. CONCLUSIONS The high seroprevalence of antibodies to SARS-CoV-2 between September and November 2020 in a densely populated military academy in Korea may have been an indicator for the resulting outbreak of COVID-19 in winter 2020-21, which highlights the importance of asymptomatic spread from the young and healthy to the general population.


Vaccine effectiveness and the epidemiological characteristics of a COVID-19 outbreak in a tertiary hospital in Republic of Korea.

  • Seonhee Ahn‎ et al.
  • Osong public health and research perspectives‎
  • 2023‎

Healthcare facilities are high-risk sites for infection. This study analyzed the epidemiological characteristics of a coronavirus disease 2019 (COVID-19) outbreak in a tertiary hospital after COVID-19 vaccination had been introduced in Republic of Korea. Vaccine effectiveness (VE) and shared anti-infection strategies are also assessed.


Development of a Specific and Rapid Diagnostic Method for Detecting Influenza A (H1N1) pdm09 Virus Infection Using Immunochromatographic Assay.

  • Mi Jung Ji‎ et al.
  • Osong public health and research perspectives‎
  • 2013‎

The aim of this study was to develop an immunochromatographic assay (ICA) for the detection of influenza A (H1N1) pdm09 virus infection.


Review of the early reports of the epidemiological characteristics of the B.1.1.7 variant of SARS-CoV-2 and its spread worldwide.

  • Yeonju Kim‎ et al.
  • Osong public health and research perspectives‎
  • 2021‎

The variant B.1.1.7 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the RNA virus causing the pandemic more than a year worldwide, was reported from United Kingdom (UK) in late December 2020. It was reported that mortality increases by 65% and transmissibility increases by 70%, which may result in an increase of reproduction number to 1.13-1.55 from 0.75-0.85. To analyze the global increasing trend of the variant B.1.1.7, we extracted results of B.1.1.7 from GISAID on May 11 and May 12, 2021, and conducted a doseresponse regression. It took 47 days to reach 20% and 121 days to reach 50% among the sequence submitted from UK. In Korea, cases of B.1.1.7 have increased since the first report of three cases on December 28, 2020. Positive rate of B.1.1.7 in Korea was 21.6% in the week from May 9 to May 15, 2021. Detection rate of the variants is expected to increase further and new variants of SARS-CoV-2 are emerging, so a close monitoring and control would be maintained for months.


Risk factors for deaths associated with COVID-19 according to the cause of death classification in Republic of Korea.

  • Na-Young Kim‎ et al.
  • Osong public health and research perspectives‎
  • 2023‎

This study aimed to classify coronavirus disease 2019 (COVID-19)-related deaths according to whether COVID-19 was listed as the cause of death, and to investigate the differences in demographic characteristics and risk factors for COVID-19 death classifications.


Avian influenza a (H5N1) virus antibodies in poultry cullers, South Korea, 2003-2004.

  • Donghyok Kwon‎ et al.
  • Emerging infectious diseases‎
  • 2012‎

Transmission of influenza (H5N1) virus from birds to humans is a serious public health threat. In South Korea, serologic investigation among 2,512 poultry workers exposed during December 2003-March 2004 to poultry with confirmed or suspected influenza (H5N1) virus infection found antibodies in 9. Frequency of bird-to-human transmission was low.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: