Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Variability in the precore and core promoter regions of HBV strains in Morocco: characterization and impact on liver disease progression.

  • Bouchra Kitab‎ et al.
  • PloS one‎
  • 2012‎

Hepatitis B virus (HBV) is one of the most common human pathogens that cause aggressive hepatitis and advanced liver disease (AdLD), including liver cirrhosis and Hepatocellular Carcinoma. The persistence of active HBV replication and liver damage after the loss of hepatitis B e antigen (HBeAg) has been frequently associated with mutations in the pre-core (pre-C) and core promoter (CP) regions of HBV genome that abolish or reduce HBeAg expression. The purpose of this study was to assess the prevalence of pre-C and CP mutations and their impact on the subsequent course of liver disease in Morocco.


Serum hepatitis B core-related antigen (HBcrAg) correlates with covalently closed circular DNA transcriptional activity in chronic hepatitis B patients.

  • Barbara Testoni‎ et al.
  • Journal of hepatology‎
  • 2019‎

It has been proposed that serum hepatitis B core-related antigen (HBcrAg) reflects intrahepatic covalently closed circular (ccc)DNA levels. However, the correlation of HBcrAg with serum and intrahepatic viral markers and liver histology has not been comprehensively investigated in a large sample. We aimed to determine if HBcrAg could be a useful therapeutic marker in patients with chronic hepatitis B.


Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide.

  • Fabien Abdul‎ et al.
  • PloS one‎
  • 2012‎

Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)₈ having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)₈ peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)₈ caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)₈-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)₈ may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses.


An immortalized human liver endothelial sinusoidal cell line for the study of the pathobiology of the liver endothelium.

  • Romain Parent‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

The endothelium lines blood and lymph vessels and protects underlying tissues against external agents such as viruses, bacteria and parasites. Yet, microbes and particularly viruses have developed sophisticated ways to bypass the endothelium in order to gain access to inner organs. De novo infection of the liver parenchyma by many viruses and notably hepatitis viruses, is thought to occur through recruitment of virions on the sinusoidal endothelial surface and subsequent transfer to the epithelium. Furthermore, the liver endothelium undergoes profound changes with age and in inflammation or infection. However, primary human liver sinusoidal endothelial cells (LSECs) are difficult to obtain due to scarcity of liver resections. Relevant derived cell lines are needed in order to analyze in a standardized fashion the transfer of pathogens across the liver endothelium. By lentiviral transduction with hTERT only, we have immortalized human LSECs isolated from a hereditary hemorrhagic telangiectasia (HHT) patient and established the non-transformed cell line TRP3. TRP3 express mesenchymal, endothelial and liver sinusoidal markers. Functional assessment of TRP3 cells demonstrated a high capacity of endocytosis, tube formation and reactivity to immune stimulation. However, TRP3 displayed few fenestrae and expressed C-type lectins intracellularly. All these findings were confirmed in the original primary LSECs from which TRP3 were derived suggesting that these features were already present in the liver donor. We consider TRP3 as a model to investigate the functionality of the liver endothelium in hepatic inflammation in infection.


Safety and immunogenicity of the therapeutic vaccine TG1050 in chronic hepatitis B patients: a phase 1b placebo-controlled trial.

  • Fabien Zoulim‎ et al.
  • Human vaccines & immunotherapeutics‎
  • 2020‎

Treatment of chronic hepatitis B (CHB) typically requires life-long administration of drugs. Cohort and pre-clinical studies have established the link between a functional T-cell-mounted immunity and resolution of infection. TG1050 is an adenovirus 5-based vaccine that expresses HBV polymerase and domains of core and surface antigen and has shown immunogenicity and antiviral effects in mice. We performed a phase 1 clinical trial to assess safety and explore immunogenicity and early efficacy of TG1050 in CHB patients. This randomized, double blind, placebo-controlled study included two sequential phases: one single dose cohort (SD, n = 12) and one multiple (3) doses cohort (MD, n = 36). Patients, virally suppressed under nucleoside(d)tide analog NUC therapy, were randomized 1:1:1 across 3 dose levels (DL) and assigned to receive 109, 1010, 1011 virus particles (vp) of TG1050 and then randomized within each DL to placebo (3:1 and 9:3 vaccines/placebo in each DL, respectively, for the SD and MD cohorts). Cellular (ELISPOT) and antibody responses (anti-Adenovirus), as well as evolution of circulating HBsAg and HBcrAg, were monitored. All doses were well tolerated in both cohorts, without severe adverse event. TG1050 was capable to induce IFN-γ producing T-cells targeting 1 to 3 encoded antigens, in particular at the 1010vp dose. Overall, minor decreases of HBsAg were observed while a number of vaccinees reached unquantifiable HBcrAg by end of the study. In CHB patients under NUC, TG1050 exhibited a good safety profile and was capable to induce HBV-specific cellular immune response. These data support further clinical evaluation, especially in combination studies.


Heparanase-1 is upregulated by hepatitis C virus and favors its replication.

  • Christophe Gallard‎ et al.
  • Journal of hepatology‎
  • 2022‎

Over time, chronic HCV infection can lead to hepatocellular carcinoma (HCC), a process that involves changes to the liver extracellular matrix (ECM). However, the exact mechanisms by which HCV induces HCC remain unclear. Therefore, we sought to investigate the impact of HCV on the liver ECM, with a focus on heparanase-1 (HPSE).


Full-length 5'RACE identifies all major HBV transcripts in HBV-infected hepatocytes and patient serum.

  • Bernd Stadelmayer‎ et al.
  • Journal of hepatology‎
  • 2020‎

Covalently closed circular DNA (cccDNA) is the episomal form of the HBV genome that stably resides in the nucleus of infected hepatocytes. cccDNA is the template for the transcription of 6 major viral RNAs, i.e. preC, pg, preS1/2, S and HBx RNA. All viral transcripts share the same 3' end and are all to various degrees subsets of each other. Especially under infection conditions, it has been difficult to study in depth the transcription of the different viral transcripts. We thus wanted to develop a method with which we could easily detect the full spectrum of viral RNAs in any lab.


SILEN-C3, a phase 2 randomized trial with faldaprevir plus pegylated interferon α-2a and ribavirin in treatment-naive hepatitis C virus genotype 1-infected patients.

  • Douglas Dieterich‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2014‎

Faldaprevir is an investigational hepatitis C virus (HCV) NS3/4A protease inhibitor which, when administered for 24 weeks in combination with pegylated interferon α-2a and ribavirin (PegIFN/RBV) in treatment-naive patients in a prior study (SILEN-C1; M. S. Sulkowski et al., Hepatology 57:2143-2154, 2013, doi:10.1002/hep.26276), achieved sustained virologic response (SVR) rates of 72 to 84%. The current randomized, open-label, parallel-group study compared the efficacy and safety of 12 versus 24 weeks of 120 mg faldaprevir administered once daily, combined with 24 or 48 weeks of PegIFN/RBV, in 160 treatment-naive HCV genotype 1 patients. Patients with maintained rapid virologic response (HCV RNA of <25 IU/ml at week 4 and undetectable at weeks 8 and 12) stopped all treatment at week 24, otherwise they continued PegIFN/RBV to week 48. SVR was achieved by 67% and 74% of patients in the 12-week and 24-week groups, respectively. Virologic response rates were lower in the 12-week group from weeks 2 to 12, during which both groups received identical treatment. SVR rates were similar in both groups for patients achieving undetectable HCV RNA. Most adverse events were mild or moderate, and 6% of patients in each treatment group discontinued treatment due to adverse events. Once-daily faldaprevir at 120 mg for 12 or 24 weeks with PegIFN/RBV resulted in high SVR rates, and the regimen was well tolerated. Differences in the overall SVR rates between the 12-week and 24-week groups were not statistically significant and possibly were due to IL28B genotype imbalances; IL28B genotype was not tested, as its significance was not known at the time of the study. These results supported phase 3 evaluation. (This study has been registered at ClinicalTrials.gov under registration no. NCT00984620).


RNA helicase DEAD box protein 5 regulates Polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis.

  • Hao Zhang‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2016‎

Chronic hepatitis B virus (HBV) infection is a major factor in hepatocellular carcinoma (HCC) pathogenesis by a mechanism not yet understood. Elucidating mechanisms of HBV-mediated hepatocarcinogenesis is needed to gain insights into classification and treatment of HCC. In HBV replicating cells, including virus-associated HCCs, suppressor of zeste 12 homolog (SUZ12), a core subunit of Polycomb repressive complex2 (PRC2), undergoes proteasomal degradation. This process requires the long noncoding RNA, Hox transcript antisense intergenic RNA (HOTAIR). Intriguingly, HOTAIR interacts with PRC2 and also binds RNA-binding E3 ligases, serving as a ubiquitination scaffold. Herein, we identified the RNA helicase, DEAD box protein 5 (DDX5), as a regulator of SUZ12 stability and PRC2-mediated gene repression, acting by regulating RNA-protein complexes formed with HOTAIR. Specifically, knockdown of DDX5 and/or HOTAIR enabled reexpression of PRC2-repressed genes epithelial cell adhesion molecule (EpCAM) and pluripotency genes. Also, knockdown of DDX5 enhanced transcription from the HBV minichromosome. The helicase activity of DDX5 stabilized SUZ12- and PRC2-mediated gene silencing, by displacing the RNA-binding E3 ligase, Mex-3 RNA-binding family member B (Mex3b), from HOTAIR. Conversely, ectopic expression of Mex3b ubiquitinated SUZ12, displaced DDX5 from HOTAIR, and induced SUZ12 down-regulation. In G2 phase of cells expressing the HBV X protein (HBx), SUZ12 preferentially associated with Mex3b, but not DDX5, resulting in de-repression of PRC2 targets, including EpCAM and pluripotency genes. Significantly, liver tumors from HBx/c-myc bitransgenic mice and chronically HBV-infected patients exhibited a strong negative correlation between DDX5 messenger RNA levels, pluripotency gene expression, and liver tumor differentiation. Notably, chronically infected HBV patients with HCC expressing reduced DDX5 exhibited poor prognosis after tumor resection, identifying DDX5 as an important player in poor prognosis HCC.


Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes.

  • Julie Lucifora‎ et al.
  • Scientific reports‎
  • 2018‎

Current therapies for chronic hepatitis B virus (HBV) infections are effective at decreasing the viral load in serum, but do not lead to viral eradication. Recent studies highlighted the therapeutic or "adjuvant" potential of immune-modulators. Our aim was to explore the direct anti-HBV effect of Toll-Like-Receptors (TLR) agonists in hepatocytes. HBV-infected primary human hepatocytes (PHH) or differentiated HepaRG cells (dHepaRG) were treated with various TLR agonists. Amongst all TLR ligands tested, Pam3CSK4 (TLR1/2-ligand) and poly(I:C)-(HMW) (TLR3/MDA5-ligand) were the best at reducing all HBV parameters. No or little viral rebound was observed after treatment arrest, implying a long-lasting effect on cccDNA. We also tested Riboxxol that features improved TLR3 specificity compared to poly(I:C)-(HMW). This agonist demonstrated a potent antiviral effect in HBV-infected PHH. Whereas, poly(I:C)-(HMW) and Pam3CSK4 mainly induced the expression of classical genes from the interferon or NF-κB pathway respectively, Riboxxol had a mixed phenotype. Moreover, TLR2 and TLR3 ligands can activate hepatocytes and immune cells, as demonstrated by antiviral cytokines produced by stimulated hepatocytes and peripheral blood mononuclear cells. In conclusion, our data highlight the potential of innate immunity activation in the direct control of HBV replication in hepatocytes, and support the development of TLR-based antiviral strategies.


Subclinical and Clinical Outcomes in Patients Coinfected With HIV and Chronic Hepatitis B Virus From Clinical Outpatient Centers in France: Protocol for an Ambispective, Longitudinal Cohort Study.

  • Anders Boyd‎ et al.
  • JMIR research protocols‎
  • 2021‎

Previous large-scale studies have examined the effect of chronic hepatitis B virus (HBV) infection on overall and cause-specific mortality in individuals with HIV. However, few studies have collected data on the subclinical indicators of HBV that lead to these severe outcomes in the coinfected population.


Tenofovir has inferior efficacy in adefovir-experienced chronic hepatitis B patients compared to nucleos(t)ide-naïve patients.

  • Goh Eun Chung‎ et al.
  • Clinical and molecular hepatology‎
  • 2017‎

A recent study reported that entecavir had inferior efficacy in nucleos(t)ide analogue (NA)-experienced chronic hepatitis B (CHB) patients compared to NA-naïve patients. We sought to compare the efficacy of tenofovir disoproxil fumarate (TDF) in NA-experienced and NA-naïve CHB patients.


CRISPR-Cas9 Targeting of Hepatitis B Virus Covalently Closed Circular DNA Generates Transcriptionally Active Episomal Variants.

  • Maria Guadalupe Martinez‎ et al.
  • mBio‎
  • 2022‎

Chronic hepatitis B virus (HBV) infection persists due to the lack of therapies that effectively target the HBV covalently closed circular DNA (cccDNA). We used HBV-specific guide RNAs (gRNAs) and CRISPR-Cas9 and determined the fate of cccDNA after gene editing. We set up a ribonucleoprotein (RNP) delivery system in HBV-infected HepG2-NTCP cells. HBV parameters after Cas9 editing were analyzed. Southern blot (SB) analysis and DNA/RNA sequencing (DNA/RNA-seq) were performed to determine the consequences of cccDNA editing and transcriptional activity of mutated cccDNA. Treatment of infected cells with HBV-specific gRNAs showed that CRISPR-Cas9 can efficiently affect HBV replication. The appearance of episomal HBV DNA variants after dual gRNA treatment was observed by PCR, SB analysis, and DNA/RNA-seq. These transcriptionally active variants are the products of simultaneous Cas9-induced double-strand breaks in two target sites, followed by repair and religation of both short and long fragments. Following suppression of HBV DNA replicative intermediates by nucleoside analogs, mutations and formation of smaller transcriptionally active HBV variants were still observed, suggesting that established cccDNA is accessible to CRISPR-Cas9 editing. Targeting HBV DNA with CRISPR-Cas9 leads to cleavage followed by appearance of episomal HBV DNA variants. Effects induced by Cas9 were sustainable after RNP degradation/loss of detection, suggesting permanent changes in the HBV genome instead of transient effects due to transcriptional interference. IMPORTANCE Hepatitis B virus infection can develop into chronic infection, cirrhosis, and hepatocellular carcinoma. Treatment of chronic hepatitis B requires novel approaches to directly target the viral minichromosome, which is responsible for the persistence of the disease. Designer nuclease approaches represent a promising strategy to treat chronic infectious diseases; however, comprehensive knowledge about the fate of the HBV minichromosome is needed before this potent tool can be used as a potential therapeutic approach. This study provides an in-depth analysis of CRISPR-Cas9 targeting of HBV minichromosome.


Compliance With Hepatocellular Carcinoma Surveillance Guidelines Associated With Increased Lead-Time Adjusted Survival of Patients With Compensated Viral Cirrhosis: A Multi-Center Cohort Study.

  • Charlotte E Costentin‎ et al.
  • Gastroenterology‎
  • 2018‎

Semi-annual surveillance for hepatocellular carcinoma (HCC) is recommended for patients with cirrhosis. We aimed to determine how compliance with HCC surveillance guidelines affects survival times of patients with hepatitis C virus- or hepatitis B virus-associated compensated cirrhosis who developed HCC.


Acyclic nucleoside thiophosphonates as potent inhibitors of HIV and HBV replication.

  • Karine Barral‎ et al.
  • European journal of medicinal chemistry‎
  • 2011‎

9-[2-(Thiophosphonomethoxy)ethyl]adenine 3 and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine 4 were synthesized as the first thiophosphonate nucleosides bearing a sulfur atom at the α-position of the acyclic nucleoside phosphonates PMEA and PMPA. Thiophosphonates S-PMEA 3 and S-PMPA 4 were evaluated for in vitro activity against HIV-1 (subtypes A to G), HIV-2 and HBV-infected cells, and found to exhibit potent antiretroviral activity. We showed that their diphosphate forms S-PMEApp 5 and S-PMPApp 6 are readily incorporated by wild-type (WT) HIV-1 RT into DNA and act as DNA chain terminators. Compounds 3 and 4 were evaluated for in vitro activity against a broad panel of DNA and RNA viruses and displayed beside HIV a moderate activity against herpes simplex virus and vaccinia viruses. In order to measure enzymatic stabilities of the target derivatives 3 and 4, kinetic data and decomposition pathways were studied at 37 °C in several media.


Inducers of the NF-κB pathways impair hepatitis delta virus replication and strongly decrease progeny infectivity in vitro.

  • Maud Michelet‎ et al.
  • JHEP reports : innovation in hepatology‎
  • 2022‎

HDV superinfection of chronically HBV-infected patients is the most aggressive form of chronic viral hepatitis, with an accelerated progression towards fibrosis/cirrhosis and increased risk of liver failure, hepatocellular carcinoma, and death. While HDV infection is not susceptible to available direct anti-HBV drugs, suboptimal responses are obtained with interferon-α-based therapies, and the number of investigational drugs remains limited. We therefore analyzed the effect of several innate immune stimulators on HDV replication in infected hepatocytes.


HIRA Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in Infected Hepatocytes.

  • Maëlle Locatelli‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes.


A 3-year follow-up study after treatment with simeprevir in combination with pegylated interferon-α and ribavirin for chronic hepatitis C virus infection.

  • Fabien Zoulim‎ et al.
  • Virology journal‎
  • 2018‎

Simeprevir is approved with pegylated interferon and ribavirin (PR) for chronic hepatitis C virus (HCV) genotype (GT) 1 and GT4 infection in the USA and the European Union.


CD8+T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction.

  • Fanny Lebossé‎ et al.
  • EBioMedicine‎
  • 2019‎

Cirrhosis-associated immune dysfunction (CAID) contributes to high sepsis risk in patients with chronic liver disease. Various innate and; to a lesser extent; adaptive immune dysfunctions have been described as contributors to CAID leading to immune-paresis and impaired anti-microbial response in cirrhosis. In this study, we examined the phenotype of CD8+T cells in chronic liver disease with the aim to evaluate changes that might contribute to impaired immune responses.


Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production.

  • Hélène Chabrolles‎ et al.
  • PLoS pathogens‎
  • 2020‎

Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: