Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 74 papers

The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines.

  • Fiona R Kolbinger‎ et al.
  • Archives of toxicology‎
  • 2018‎

High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas.

  • Sebastian Bender‎ et al.
  • Cancer cell‎
  • 2013‎

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma.

  • Marco Lodrini‎ et al.
  • Nucleic acids research‎
  • 2013‎

MYCN is a master regulator controlling many processes necessary for tumor cell survival. Here, we unravel a microRNA network that causes tumor suppressive effects in MYCN-amplified neuroblastoma cells. In profiling studies, histone deacetylase (HDAC) inhibitor treatment most strongly induced miR-183. Enforced miR-183 expression triggered apoptosis, and inhibited anchorage-independent colony formation in vitro and xenograft growth in mice. Furthermore, the mechanism of miR-183 induction was found to contribute to the cell death phenotype induced by HDAC inhibitors. Experiments to identify the HDAC(s) involved in miR-183 transcriptional regulation showed that HDAC2 depletion induced miR-183. HDAC2 overexpression reduced miR-183 levels and counteracted the induction caused by HDAC2 depletion or HDAC inhibitor treatment. MYCN was found to recruit HDAC2 in the same complexes to the miR-183 promoter, and HDAC2 depletion enhanced promoter-associated histone H4 pan-acetylation, suggesting epigenetic changes preceded transcriptional activation. These data reveal miR-183 tumor suppressive properties in neuroblastoma that are jointly repressed by MYCN and HDAC2, and suggest a novel way to bypass MYCN function.


Oncolytic effects of parvovirus H-1 in medulloblastoma are associated with repression of master regulators of early neurogenesis.

  • Jeannine Lacroix‎ et al.
  • International journal of cancer‎
  • 2014‎

Based on extensive pre-clinical studies, the oncolytic parvovirus H-1 (H-1PV) is currently applied to patients with recurrent glioblastoma in a phase I/IIa clinical trial (ParvOryx01, NCT01301430). Cure rates of about 40% in pediatric high-risk medulloblastoma (MB) patients also indicate the need of new therapeutic approaches. In order to prepare a future application of oncolytic parvovirotherapy to MB, the present study preclinically evaluates the cytotoxic efficacy of H-1PV on MB cells in vitro and characterizes cellular target genes involved in this effect. Six MB cell lines were analyzed by whole genome oligonucleotide microarrays after treatment and the results were matched to known molecular and cytogenetic risk factors. In contrast to non-transformed infant astrocytes and neurons, in five out of six MB cell lines lytic H-1PV infection and efficient viral replication could be demonstrated. The cytotoxic effects induced by H-1PV were observed at LD50s below 0.05 p. f. u. per cell indicating high susceptibility. Gene expression patterns in the responsive MB cell lines allowed the identification of candidate target genes mediating the cytotoxic effects of H-1PV. H-1PV induced down-regulation of key regulators of early neurogenesis shown to confer poor prognosis in MB such as ZIC1, FOXG1B, MYC, and NFIA. In MB cell lines with genomic amplification of MYC, expression of MYC was the single gene most significantly repressed after H-1PV infection. H-1PV virotherapy may be a promising treatment approach for MB since it targets genes of functional relevance and induces cell death at very low titers of input virus.


Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing.

  • Florian Selt‎ et al.
  • Oncotarget‎
  • 2017‎

Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.


Response to trametinib treatment in progressive pediatric low-grade glioma patients.

  • Florian Selt‎ et al.
  • Journal of neuro-oncology‎
  • 2020‎

A hallmark of pediatric low-grade glioma (pLGG) is aberrant signaling of the mitogen activated protein kinase (MAPK) pathway. Hence, inhibition of MAPK signaling using small molecule inhibitors such as MEK inhibitors (MEKi) may be a promising strategy.


Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program 'iTHER'.

  • Karin P S Langenberg‎ et al.
  • European journal of cancer (Oxford, England : 1990)‎
  • 2022‎

iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.


Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts.

  • Martin Mynarek‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification.


Sarcoma classification by DNA methylation profiling.

  • Christian Koelsche‎ et al.
  • Nature communications‎
  • 2021‎

Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.


Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome.

  • Sabine A Hartlieb‎ et al.
  • Nature communications‎
  • 2021‎

Telomere maintenance by telomerase activation or alternative lengthening of telomeres (ALT) is a major determinant of poor outcome in neuroblastoma. Here, we screen for ALT in primary and relapsed neuroblastomas (n = 760) and characterize its features using multi-omics profiling. ALT-positive tumors are molecularly distinct from other neuroblastoma subtypes and enriched in a population-based clinical sequencing study cohort for relapsed cases. They display reduced ATRX/DAXX complex abundance, due to either ATRX mutations (55%) or low protein expression. The heterochromatic histone mark H3K9me3 recognized by ATRX is enriched at the telomeres of ALT-positive tumors. Notably, we find a high frequency of telomeric repeat loci with a neuroblastoma ALT-specific hotspot on chr1q42.2 and loss of the adjacent chromosomal segment forming a neo-telomere. ALT-positive neuroblastomas proliferate slowly, which is reflected by a protracted clinical course of disease. Nevertheless, children with an ALT-positive neuroblastoma have dismal outcome.


Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B.

  • Maximilian Y Deng‎ et al.
  • Nature communications‎
  • 2021‎

Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.


Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors.

  • Philipp Sievers‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum.

  • Karam T Alhalabi‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Class I HDAC inhibition reduces DNA damage repair capacity of MYC-amplified medulloblastoma cells.

  • Johanna Vollmer‎ et al.
  • Journal of neuro-oncology‎
  • 2023‎

MYC-driven Group 3 medulloblastoma (MB) (subtype II) is a highly aggressive childhood brain tumor. Sensitivity of MYC-driven MB to class I histone deacetylase inhibitors (HDACi) has been previously demonstrated in vitro and in vivo. In this study we characterize the transcriptional effects of class I HDACi in MYC-driven MB and explore beneficial drug combinations.


Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology.

  • Dominik Sturm‎ et al.
  • Nature medicine‎
  • 2023‎

The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.


The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial.

  • Lindsay B Kilburn‎ et al.
  • Nature medicine‎
  • 2024‎

BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .


Conumee 2.0: enhanced copy-number variation analysis from DNA methylation arrays for humans and mice.

  • Bjarne Daenekas‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2024‎

Copy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical routines and in research settings.


Combination drug screen identifies synergistic drug interaction of BCL-XL and class I histone deacetylase inhibitors in MYC-amplified medulloblastoma cells.

  • Simon Zeuner‎ et al.
  • Journal of neuro-oncology‎
  • 2024‎

Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease.


Pediatric and Adult High-Grade Glioma Stem Cell Culture Models Are Permissive to Lytic Infection with Parvovirus H-1.

  • Rafael Josupeit‎ et al.
  • Viruses‎
  • 2016‎

Combining virus-induced cytotoxic and immunotherapeutic effects, oncolytic virotherapy represents a promising therapeutic approach for high-grade glioma (HGG). A clinical trial has recently provided evidence for the clinical safety of the oncolytic parvovirus H-1 (H-1PV) in adult glioblastoma relapse patients. The present study assesses the efficacy of H-1PV in eliminating HGG initiating cells. H-1PV was able to enter and to transduce all HGG neurosphere culture models (n = 6), including cultures derived from adult glioblastoma, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Cytotoxic effects induced by the virus have been observed in all HGG neurospheres at half maximal inhibitory concentration (IC50) doses of input virus between 1 and 10 plaque forming units per cell. H-1PV infection at this dose range was able to prevent tumorigenicity of NCH421k glioblastoma multiforme (GBM) "stem-like" cells in NOD/SCID mice. Interestingly NCH421R, an isogenic subclone with equal capacity of xenograft formation, but resistant to H-1PV infection could be isolated from the parental NCH421k culture. To reveal changes in gene expression associated with H-1PV resistance we performed a comparative gene expression analysis in these subclones. Several dysregulated genes encoding receptor proteins, endocytosis factors or regulators innate antiviral responses were identified and represent intriguing candidates for to further study molecular mechanisms of H-1PV resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: