Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 124 papers

Amino acid derangements in adults with severe falciparum malaria.

  • Stije J Leopold‎ et al.
  • Scientific reports‎
  • 2019‎

Amino acid derangements are common in severe falciparum malaria and have been associated with endothelial dysfunction (L-arginine), metabolic acidosis (alanine and lactate), and disease severity (phenylalanine and tryptophan metabolites). Whether these amino acid perturbations reflect isolated pathogenic mechanisms or if they are part of overall changes in amino acid metabolism is unclear. To investigate this, we prospectively simultaneously quantified a broad range of plasma free amino acids (PFAA) using HPLC-MRM-Mass spectrometry in relation to presenting symptoms in adults with severe malaria (n = 88), septicaemia (n = 88), uncomplicated malaria (n = 71), and healthy controls (n = 48) from Bangladesh. The total plasma concentration of measured amino acids was significantly reduced in each of the patient groups when compared to normal levels observed in healthy local controls: uncomplicated malaria -54%, severe malaria -23%, and sepsis -32%, (p = <0.001). Inspection of amino acid profiles revealed that in each group the majority of amino acids were below normal levels, except for phenylalanine. Among patients with severe malaria, L-lactate was strongly associated with an increase of the total amino acid concentration, likely because this reflects tissue hypoxia. Our data confirm previously described amino acid abnormalities, likely resulting from overall changes in the concentration of PFAA.


Plasmodium vivax Relapse Rates Following Plasmodium falciparum Malaria Reflect Previous Transmission Intensity.

  • Elizabeth A Ashley‎ et al.
  • The Journal of infectious diseases‎
  • 2019‎

From 2003 through 2009, 687 of 2885 patients (23.8%) treated for Plasmodium falciparum malaria in clinical studies in Myanmar or on the Thailand-Myanmar border had recurrent Plasmodium vivax malaria within 63 days, compared with 18 of 429 patients (4.2%) from 2010 onward (risk ratio [RR], 0.176; 95% confidence interval, .112-.278; P < .0001). Corresponding data from 42 days of follow-up revealed that 820 of 3883 patients (21.1%) had recurrent P. vivax malaria before 2010, compared with 22 of 886 (2.5%) from 2010 onward (RR, 0.117; 95% CI, .077-.177; P < .0001). This 6-fold reduction suggests a recent decline in P. vivax transmission intensity and, thus, a substantial reduction in the proportion of individuals harboring hypnozoites.


Sequestration and Red Cell Deformability as Determinants of Hyperlactatemia in Falciparum Malaria.

  • Haruhiko Ishioka‎ et al.
  • The Journal of infectious diseases‎
  • 2016‎

Hyperlactatemia is a strong predictor of mortality in severe falciparum malaria. Sequestered parasitized erythrocytes and reduced uninfected red blood cell deformability (RCD) compromise microcirculatory flow, leading to anaerobic glycolysis.


Laboratory prediction of the requirement for renal replacement in acute falciparum malaria.

  • Josh Hanson‎ et al.
  • Malaria journal‎
  • 2011‎

Acute renal failure is a common complication of severe malaria in adults, and without renal replacement therapy (RRT), it carries a poor prognosis. Even when RRT is available, delaying its initiation may increase mortality. Earlier identification of patients who will need RRT may improve outcomes.


The impact of targeted malaria elimination with mass drug administrations on falciparum malaria in Southeast Asia: A cluster randomised trial.

  • Lorenz von Seidlein‎ et al.
  • PLoS medicine‎
  • 2019‎

The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent.


Does reduced oxygen delivery cause lactic acidosis in falciparum malaria? An observational study.

  • Hugh W Kingston‎ et al.
  • Malaria journal‎
  • 2019‎

Lactic acidosis with an elevated lactate-pyruvate ratio suggesting anoxia is a common feature of severe falciparum malaria. High lactate levels are associated with parasitized erythrocyte sequestration in the microcirculation. To assess if there is an additional contribution to hyperlactataemia from relatively inadequate total oxygen delivery, oxygen consumption and delivery were investigated in patients with malaria.


Severe falciparum malaria in pregnancy in Southeast Asia: a multi-centre retrospective cohort study.

  • Makoto Saito‎ et al.
  • BMC medicine‎
  • 2023‎

Severe malaria in pregnancy causes maternal mortality, morbidity, and adverse foetal outcomes. The factors contributing to adverse maternal and foetal outcomes are not well defined. We aimed to identify the factors predicting higher maternal mortality and to describe the foetal mortality and morbidity associated with severe falciparum malaria in pregnancy.


Identifying the Components of Acidosis in Patients With Severe Plasmodium falciparum Malaria Using Metabolomics.

  • Stije J Leopold‎ et al.
  • The Journal of infectious diseases‎
  • 2019‎

Acidosis in severe Plasmodium falciparum malaria is associated with high mortality, yet the pathogenesis remains incompletely understood. The aim of this study was to determine the nature and source of metabolic acids contributing to acidosis in patients with severe falciparum malaria.


Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis.

  • Richard M Hoglund‎ et al.
  • PLoS medicine‎
  • 2017‎

Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine.


Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response.

  • Lei Zhu‎ et al.
  • Communications biology‎
  • 2022‎

The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome analysis was conducted of 577 P. falciparum isolates collected in the GMS between 2016-2018. A specific artemisinin resistance-associated transcriptional profile was identified that involves a broad but discrete set of biological functions related to proteotoxic stress, host cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated transcriptional profile evolved from initial transcriptional responses of susceptible parasites to artemisinin. The genetic basis for this adapted response is likely to be complex.


Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement.

  • Ilse C E Hendriksen‎ et al.
  • PLoS medicine‎
  • 2012‎

In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2) is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria.


Rapid clinical assessment to facilitate the triage of adults with falciparum malaria, a retrospective analysis.

  • Josh Hanson‎ et al.
  • PloS one‎
  • 2014‎

Most adults dying from falciparum malaria will die within 48 hours of their hospitalisation. An essential component of early supportive care is the rapid identification of patients at greatest risk. In resource-poor settings, where most patients with falciparum malaria are managed, decisions regarding patient care must frequently be made using clinical evaluation alone.


Investigating causal pathways in severe falciparum malaria: A pooled retrospective analysis of clinical studies.

  • Stije J Leopold‎ et al.
  • PLoS medicine‎
  • 2019‎

Severe falciparum malaria is a medical emergency characterised by potentially lethal vital organ dysfunction. Patient fatality rates even with parenteral artesunate treatment remain high. Despite considerable research into adjuvant therapies targeting organ and tissue dysfunction, none have shown efficacy apart from renal replacement therapy. Understanding the causal contributions of clinical and laboratory abnormalities to mortality is essential for the design and evaluation of novel therapeutic interventions.


Mass drug administration for the acceleration of malaria elimination in a region of Myanmar with artemisinin-resistant falciparum malaria: a cluster-randomised trial.

  • Alistair R D McLean‎ et al.
  • The Lancet. Infectious diseases‎
  • 2021‎

To contain multidrug-resistant Plasmodium falciparum, malaria elimination in the Greater Mekong subregion needs to be accelerated while current antimalarials remain effective. We evaluated the safety, effectiveness, and potential resistance selection of dihydroartemisinin-piperaquine mass drug administration (MDA) in a region with artemisinin resistance in Myanmar.


Optimising strategies for Plasmodium falciparum malaria elimination in Cambodia: primaquine, mass drug administration and artemisinin resistance.

  • Richard J Maude‎ et al.
  • PloS one‎
  • 2012‎

Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria.


Anti-Gametocyte Antigen Humoral Immunity and Gametocytemia During Treatment of Uncomplicated Falciparum Malaria: A Multi-National Study.

  • Katherine O'Flaherty‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2022‎

Understanding the human immune response to Plasmodium falciparum gametocytes and its association with gametocytemia is essential for understanding the transmission of malaria as well as progressing transmission blocking vaccine candidates.


Safety and efficacy of dihydroartemisinin-piperaquine in falciparum malaria: a prospective multi-centre individual patient data analysis.

  • Julien Zwang‎ et al.
  • PloS one‎
  • 2009‎

The fixed dose antimalarial combination of dihydroartemisinin-piperaquine (DP) is a promising new artemisinin-based combination therapy (ACT). We present an individual patient data analysis of efficacy and tolerability in acute uncomplicated falciparum malaria, from seven published randomized clinical trials conducted in Africa and South East Asia using a predefined in-vivo protocol. Comparator drugs were mefloquine-artesunate (MAS3) in Thailand, Myanmar, Laos and Cambodia; artemether-lumefantrine in Uganda; and amodiaquine+sulfadoxine-pyrimethamine and artesunate+amodiaquine in Rwanda.


Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria.

  • D Herbert Opi‎ et al.
  • PLoS genetics‎
  • 2023‎

Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.


A Controlled Trial of Mass Drug Administration to Interrupt Transmission of Multidrug-Resistant Falciparum Malaria in Cambodian Villages.

  • Rupam Tripura‎ et al.
  • Clinical infectious diseases : an official publication of the Infectious Diseases Society of America‎
  • 2018‎

The increase in multidrug-resistant Plasmodium falciparum in Southeast Asia suggests a need for acceleration of malaria elimination. We evaluated the effectiveness and safety of mass drug administration (MDA) to interrupt malaria transmission.


K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016.

  • Nguyen Thuy-Nhien‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2017‎

The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: