Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Bacteriostatic and Cytotoxic Properties of Composite Material Based on ZnO Nanoparticles in PLGA Obtained by Low Temperature Method.

  • Dmitriy E Burmistrov‎ et al.
  • Polymers‎
  • 2021‎

A low-temperature technology was developed for producing a nanocomposite based on poly (lactic-co-glycolic acid) and zinc oxide nanoparticles (ZnO-NPs), synthesized by laser ablation. Nanocomposites were created containing 0.001, 0.01, and 0.1% of zinc oxide nanoparticles with rod-like morphology and a size of 40-70 nm. The surface of the films from the obtained nanomaterial was uniform, without significant defects. Clustering of ZnO-NPs in the PLGA matrix was noted, which increased with an increase in the concentration of the dopant in the polymer. The resulting nanomaterial was capable of generating reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals. The rate of ROS generation increased with an increase in the concentration of the dopant. It was shown that the synthesized nanocomposite promotes the formation of long-lived reactive protein species, and is also the reason for the appearance of a key biomarker of oxidative stress, 8-oxoguanine, in DNA. The intensity of the process increased with an increase in the concentration of nanoparticles in the matrix. It was found that the nanocomposite exhibits significant bacteriostatic properties, the severity of which depends on the concentration of nanoparticles. In particular, on the surface of the PLGA-ZnO-NPs composite film containing 0.001% nanoparticles, the number of bacterial cells was 50% lower than that of pure PLGA. The surface of the composite is non-toxic to eukaryotic cells and does not interfere with their adhesion, growth, and division. Due to its low cytotoxicity and bacteriostatic properties, this nanocomposite can be used as coatings for packaging in the food industry, additives for textiles, and also as a material for biomedicine.


The Development of New Nanocomposite Polytetrafluoroethylene/Fe2O3 NPs to Prevent Bacterial Contamination in Meat Industry.

  • Dmitriy A Serov‎ et al.
  • Polymers‎
  • 2022‎

The bacterial contamination of cutting boards and other equipment in the meat processing industry is one of the key reasons for reducing the shelf life and consumer properties of products. There are two ways to solve this problem. The first option is to create coatings with increased strength in order to prevent the formation of micro damages that are favorable for bacterial growth. The second possibility is to create materials with antimicrobial properties. The use of polytetrafluoroethylene (PTFE) coatings with the addition of metal oxide nanoparticles will allow to the achieving of both strength and bacteriostatic effects at the same time. In the present study, a new coating based on PTFE and Fe2O3 nanoparticles was developed. Fe2O3 nanoparticles were synthesized by laser ablation in water and transferred into acetone using the developed procedures. An acetone-based colloidal solution was mixed with a PTFE-based varnish. Composites with concentrations of Fe2O3 nanoparticles from 0.001-0.1% were synthesized. We studied the effect of the obtained material on the generation of ROS (hydrogen peroxide and hydroxyl radicals), 8-oxoguanine, and long-lived active forms of proteins. It was found that PTFE did not affect the generation of all the studied compounds, and the addition of Fe2O3 nanoparticles increased the generation of H2O2 and hydroxyl radicals by up to 6 and 7 times, respectively. The generation of 8-oxoguanine and long-lived reactive protein species in the presence of PTFE/Fe2O3 NPs at 0.1% increased by 2 and 3 times, respectively. The bacteriostatic and cytotoxic effects of the developed material were studied. PTFE with the addition of Fe2O3 nanoparticles, at a concentration of 0.001% or more, inhibited the growth of E. coli by 2-5 times compared to the control or PTFE without NPs. At the same time, PTFE, even with the addition of 0.1% Fe2O3 nanoparticles, did not significantly impact the survival of eukaryotic cells. It was assumed that the resulting composite material could be used to cover cutting boards and other polymeric surfaces in the meat processing industry.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: