Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Stroke infarct volume estimation in fixed tissue: Comparison of diffusion kurtosis imaging to diffusion weighted imaging and histology in a rodent MCAO model.

  • Vibeke Bay‎ et al.
  • PloS one‎
  • 2018‎

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.


The Role of the Human Brain Neuron-Glia-Synapse Composition in Forming Resting-State Functional Connectivity Networks.

  • Sayan Kahali‎ et al.
  • Brain sciences‎
  • 2021‎

While significant progress has been achieved in studying resting-state functional networks in a healthy human brain and in a wide range of clinical conditions, many questions related to their relationship to the brain's cellular constituents remain. Here, we use quantitative Gradient-Recalled Echo (qGRE) MRI for mapping the human brain cellular composition and BOLD (blood-oxygen level-dependent) MRI to explore how the brain cellular constituents relate to resting-state functional networks. Results show that the BOLD signal-defined synchrony of connections between cellular circuits in network-defined individual functional units is mainly associated with the regional neuronal density, while the between-functional units' connectivity strength is also influenced by the glia and synaptic components of brain tissue cellular constituents. These mechanisms lead to a rather broad distribution of resting-state functional network properties. Visual networks with the highest neuronal density (but lowest density of glial cells and synapses) exhibit the strongest coherence of the BOLD signal as well as the strongest intra-network connectivity. The Default Mode Network (DMN) is positioned near the opposite part of the spectrum with relatively low coherence of the BOLD signal but with a remarkably balanced cellular contents, enabling DMN to have a prominent role in the overall organization of the brain and hierarchy of functional networks.


Diffusion time dependence, power-law scaling, and exchange in gray matter.

  • Jonas L Olesen‎ et al.
  • NeuroImage‎
  • 2022‎

Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.


Quantitative Gradient Echo MRI Identifies Dark Matter as a New Imaging Biomarker of Neurodegeneration that Precedes Tisssue Atrophy in Early Alzheimer's Disease.

  • Satya V V N Kothapalli‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2022‎

Currently, brain tissue atrophy serves as an in vivo MRI biomarker of neurodegeneration in Alzheimer's disease (AD). However, postmortem histopathological studies show that neuronal loss in AD exceeds volumetric loss of tissue and that loss of memory in AD begins when neurons and synapses are lost. Therefore, in vivo detection of neuronal loss prior to detectable atrophy in MRI is essential for early AD diagnosis.


Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: an experimental model in the ferret.

  • Andrew S Bock‎ et al.
  • Frontiers in systems neuroscience‎
  • 2010‎

Diffusion tensor imaging (DTI) is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA), that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7) in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi-staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.


Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

  • Peter Vestergaard-Poulsen‎ et al.
  • PloS one‎
  • 2011‎

Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.


Limbic system damage in MS: MRI assessment and correlations with clinical testing.

  • Jie Wen‎ et al.
  • PloS one‎
  • 2017‎

Volume loss in some limbic region structures has been observed in multiple sclerosis (MS) patients. However, in vivo evaluation of existing tissue cellular microstructure integrity has received less attention. The goal of studies reported here was to quantitatively assess loss of limbic system volumes and tissue integrity, and to evaluate associations of these measures with cognitive and physical dysfunction in MS patients. Thirty-one healthy controls (HC) and 80 MS patients, including 32 relapsing remitting (RRMS), 32 secondary progressive (SPMS) and 16 primary progressive (PPMS), participated in this study. Tissue cellular integrity was evaluated by means of recently introduced tissue-specific parameter R2t* that was calculated from multi-gradient-echo MRI signals using a recently developed method that separates R2t* from BOLD (blood oxygen level dependent) contributions to GRE signal decay rate constant (R2*), and accounting for physiological fluctuations and artifacts from background gradients. Volumes in limbic system regions, normalized to skull size (NV), were measured from standard MPRAGE images. MS patients had lower R2t* and smaller normalized volumes in the hippocampus, amygdala, and several other limbic system regions, compared to HC. Alterations in R2t* of several limbic system regions correlated with clinical and neurocognitive test scores in MS patients. In contrast, smaller normalized volumes in MS were only correlated with neurocognitive test scores in the hippocampus and amygdala. This study reports the novel finding that R2t*, a measure that estimates tissue integrity, is more sensitive to tissue damage in limbic system structures than is atrophy. R2t* measurements can serve as a biomarker that is distinct from and complementary to volume measurements.


In vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imaging.

  • Yue Zhao‎ et al.
  • NeuroImage‎
  • 2017‎

Alzheimer disease (AD) affects at least 5 million individuals in the USA alone stimulating an intense search for disease prevention and treatment therapies as well as for diagnostic techniques allowing early identification of AD during a long pre-symptomatic period that can be used for the initiation of prevention trials of disease-modifying therapies in asymptomatic individuals.


Genetically defined cellular correlates of the baseline brain MRI signal.

  • Jie Wen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

fMRI revolutionized neuroscience by allowing in vivo real-time detection of human brain activity. While the nature of the fMRI signal is understood as resulting from variations in the MRI signal due to brain-activity-induced changes in the blood oxygenation level (BOLD effect), these variations constitute a very minor part of a baseline MRI signal. Hence, the fundamental (and not addressed) questions are how underlying brain cellular composition defines this baseline MRI signal and how a baseline MRI signal relates to fMRI. Herein we investigate these questions by using a multimodality approach that includes quantitative gradient recalled echo (qGRE), volumetric and functional connectivity MRI, and gene expression data from the Allen Human Brain Atlas. We demonstrate that in vivo measurement of the major baseline component of a GRE signal decay rate parameter (R2t*) provides a unique genetic perspective into the cellular constituents of the human cortex and serves as a previously unidentified link between cortical tissue composition and fMRI signal. Data show that areas of the brain cortex characterized by higher R2t* have high neuronal density and have stronger functional connections to other brain areas. Interestingly, these areas have a relatively smaller concentration of synapses and glial cells, suggesting that myelinated cortical axons are likely key cortical structures that contribute to functional connectivity. Given these associations, R2t* is expected to be a useful signal in assessing microstructural changes in the human brain during development and aging in health and disease.


On the relationship between cellular and hemodynamic properties of the human brain cortex throughout adult lifespan.

  • Yue Zhao‎ et al.
  • NeuroImage‎
  • 2016‎

Establishing baseline MRI biomarkers for normal brain aging is significant and valuable for separating normal changes in the brain structure and function from different neurological diseases. In this paper for the first time we have simultaneously measured a variety of tissue specific contributions defining R2* relaxation of the gradient recalled echo (GRE) MRI signal in human brains of healthy adults (ages 22 to 74years) and related these measurements to tissue structural and functional properties. This was accomplished by separating tissue (R2t(⁎)) and extravascular BOLD contributions to the total tissue specific GRE MRI signal decay (R2(⁎)) using an advanced version of previously developed Gradient Echo Plural Contrast Imaging (GEPCI) approach and the acquisition and post-processing methods that allowed the minimization of artifacts related to macroscopic magnetic field inhomogeneities, and physiological fluctuations. Our data (20 healthy subjects) show that in most cortical regions R2t(⁎) increases with age while tissue hemodynamic parameters, i.e. relative oxygen extraction fraction (OEFrel), deoxygenated cerebral blood volume (dCBV) and tissue concentration of deoxyhemoglobin (Cdeoxy) remain practically constant. We also found the important correlations characterizing the relationships between brain structural and hemodynamic properties in different brain regions. Specifically, thicker cortical regions have lower R2t(⁎) and these regions have lower OEF. The comparison between GEPCI-derived tissue specific structural and functional metrics and literature information suggests that (a) regions in a brain characterized by higher R2t(⁎) contain higher concentration of neurons with less developed cellular processes (dendrites, spines, etc.), (b) regions in a brain characterized by lower R2t(⁎) represent regions with lower concentration of neurons but more developed cellular processes, and (c) the age-related increases in the cortical R2t(⁎) mostly reflect the age-related increases in the cellular packing density. The baseline GEPCI-based biomarkers obtain herein could serve to help distinguish age-related changes in brain cellular and hemodynamic properties from changes which occur due to the neurodegenerative diseases.


Evaluating brain damage in multiple sclerosis with simultaneous multi-angular-relaxometry of tissue.

  • Biao Xiang‎ et al.
  • Annals of clinical and translational neurology‎
  • 2022‎

Multiple sclerosis (MS) is a common demyelinating central nervous system disease. MRI methods that can quantify myelin loss are needed for trials of putative remyelinating agents. Quantitative magnetization transfer MRI introduced the macromolecule proton fraction (MPF), which correlates with myelin concentration. We developed an alternative approach, Simultaneous-Multi-Angular-Relaxometry-of-Tissue (SMART) MRI, to generate MPF. Our objective was to test SMART-derived MPF metric as a potential imaging biomarker of demyelination.


Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI.

  • Jie Wen‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

Cortical gray matter (GM) damage is now widely recognized in multiple sclerosis (MS). The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2(*)) in 10 each relapsing-remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2(*) values from healthy controls (HCs) of varying ages were obtained to establish baseline data and calculate ΔR2(*) values - age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2(*) values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT) and paced auditory serial addition (PASAT) neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2(*) values were lower in multiple cortical GM and normal appearing white matter (NAWM) regions in MS compared with HC. ΔR2(*) values of global cortical GM and several specific cortical regions showed significant (p < 0.05) correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests) showed no correlation with cortical GM ΔR2(*) values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2(*) values can serve as biomarkers of tissue injury due to MS in the brain, including the cerebral cortex, an area that has been difficult to evaluate using standard MRI.


Modeling dendrite density from magnetic resonance diffusion measurements.

  • Sune N Jespersen‎ et al.
  • NeuroImage‎
  • 2007‎

Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (D(L)) and perpendicular (D(T)) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides an estimate of dendrite density from noninvasive MR diffusion measurements, a parameter likely to be of value for understanding normal as well as abnormal brain development and function.


Evidence for microscopic kurtosis in neural tissue revealed by correlation tensor MRI.

  • Rafael Neto Henriques‎ et al.
  • Magnetic resonance in medicine‎
  • 2021‎

The impact of microscopic diffusional kurtosis (µK), arising from restricted diffusion and/or structural disorder, remains a controversial issue in contemporary diffusion MRI (dMRI). Recently, correlation tensor imaging (CTI) was introduced to disentangle the sources contributing to diffusional kurtosis, without relying on a-priori multi-gaussian component (MGC) or other microstructural assumptions. Here, we investigated µK in in vivo rat brains and assessed its impact on state-of-the-art methods ignoring µK.


Correlation Tensor MRI deciphers underlying kurtosis sources in stroke.

  • Rita Alves‎ et al.
  • NeuroImage‎
  • 2022‎

Noninvasively detecting and characterizing modulations in cellular scale micro-architecture remains a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. Diffusion kurtosis imaging (DKI) has been shown to significantly enhance the sensitivity of stroke detection compared to its diffusion tensor imaging (DTI) counterparts. However, the interpretation of DKI remains ambiguous as its contrast may arise from competing kurtosis sources related to the anisotropy of tissue components, diffusivity variance across components, and microscopic kurtosis (e.g., arising from cross-sectional variance, structural disorder, and restriction). Resolving these sources may be fundamental for developing more specific imaging techniques for stroke management, prognosis, and understanding its pathophysiology. In this study, we apply Correlation Tensor MRI (CTI) - a double diffusion encoding (DDE) methodology recently introduced for deciphering kurtosis sources based on the unique information captured in DDE's diffusion correlation tensors - to investigate the underpinnings of kurtosis measurements in acute ischemic lesions. Simulations for the different kurtosis sources revealed specific signatures for cross-sectional variance (representing neurite beading), edema, and cell swelling. Ex vivo CTI experiments at 16.4 T were then performed in an experimental photothrombotic stroke model 3 h post-stroke (N = 10), and successfully separated anisotropic, isotropic, and microscopic non-Gaussian diffusion sources in the ischemic lesions. Each of these kurtosis sources provided unique contrasts in the stroked area. Particularly, microscopic kurtosis was shown to be a primary "driver" of total kurtosis upon ischemia; its large increases, coupled with decreases in anisotropic kurtosis, are consistent with the expected elevation in cross-sectional variance, likely linked to beading effects in small objects such as neurites. In vivo experiments at 9.4 T at the same time point (3 h post ischemia, N = 5) demonstrated the stability and relevance of the findings and showed that fixation is not a dominant confounder in our findings. In future studies, the different CTI contrasts may be useful to address current limitations of stroke imaging, e.g., penumbra characterization, distinguishing lesion progression form tissue recovery, and elucidating pathophysiological correlates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: