Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 215 papers

Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss.

  • Bruno A Benitez‎ et al.
  • Acta neuropathologica communications‎
  • 2015‎

Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (AD-ANCL) is a multisystem disease caused by mutations in the DNAJC5 gene. DNAJC5 encodes Cysteine String Protein-alpha (CSPα), a putative synaptic protein. AD-ANCL has been traditionally considered a lysosomal storage disease based on the intracellular accumulation of ceroid material. Here, we report for the first time the pathological findings of a patient in a clinically early stage of disease, which exhibits the typical neuronal intracellular ceroid accumulation and incipient neuroinflammation but no signs of brain atrophy, neurodegeneration or massive synaptic loss. Interestingly, we found minimal or no apparent reductions in CSPα or synaptophysin in the neuropil. In contrast, brain homogenates from terminal AD-ANCL patients exhibit significant reductions in SNARE-complex forming presynaptic protein levels, including a significant reduction in CSPα and SNAP-25. Frozen samples for the biochemical analyses of synaptic proteins were not available for the early stage AD-ANLC patient. These results suggest that the degeneration seen in the patients with AD-ANCL reported here might be a consequence of both the early effects of CSPα mutations at the cellular soma, most likely lysosome function, and subsequent neuronal loss and synaptic dysfunction.


Longitudinal associations between physical and cognitive performance among community-dwelling older adults.

  • Magdalena I Tolea‎ et al.
  • PloS one‎
  • 2015‎

To assess the directionality of the association between physical and cognitive decline in later life, we compared patterns of decline in performance across groups defined by baseline presence of cognitive and/or physical impairment [none (n = 217); physical only (n = 169); cognitive only (n = 158), or both (n = 220)] in a large sample of participants in a cognitive aging study at the Knight Alzheimer's Disease Research Center at Washington University in St. Louis who were followed for up to 8 years (3,079 observations). Rates of decline reached 20% for physical performance and varied across cognitive tests (global, memory, speed, executive function, and visuospatial skills). We found that physical decline was better predicted by baseline cognitive impairment (slope = -1.22, p<0.001), with baseline physical impairment not contributing to further decline in physical performance (slope = -0.25, p = 0.294). In turn, baseline physical impairment was only marginally associated with rate of cognitive decline across various cognitive domains. The cognitive-functional association is likely to operate in the direction of cognitive impairment to physical decline although physical impairment may also play a role in cognitive decline/dementia. Interventions to prevent further functional decline and development of disability and complete dependence may benefit if targeted to individuals with cognitive impairment who are at increased risk.


Quantitative amyloid imaging using image-derived arterial input function.

  • Yi Su‎ et al.
  • PloS one‎
  • 2015‎

Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization may not be accurate.


Partial volume correction in quantitative amyloid imaging.

  • Yi Su‎ et al.
  • NeuroImage‎
  • 2015‎

Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition.


Widespread distribution of tauopathy in preclinical Alzheimer's disease.

  • Stephanie A Schultz‎ et al.
  • Neurobiology of aging‎
  • 2018‎

The objective of this study was to examine the distribution and severity of tau-PET binding in cognitively normal adults with preclinical Alzheimer's disease as determined by positive beta-amyloid PET. 18F-AV-1451 tau-PET data from 109 cognitively normal older adults were processed with 34 cortical and 9 subcortical FreeSurfer regions and averaged across both hemispheres. Individuals were classified as being beta-amyloid positive (N = 25, A+) or negative (N = 84, A-) based on a 18F-AV-45 beta-amyloid-PET standardized uptake value ratio of 1.22. We compared the tau-PET binding in the 2 groups using covariate-adjusted linear regressions. The A+ cohort had higher tau-PET binding within 8 regions: precuneus, amygdala, banks of the superior temporal sulcus, entorhinal cortex, fusiform gyrus, inferior parietal cortex, inferior temporal cortex, and middle temporal cortex. These findings, consistent with preclinical involvement of the medial temporal lobe and parietal lobe and association regions by tauopathy, emphasize that therapies targeting tauopathy in Alzheimer's disease could be considered before the onset of symptoms to prevent or ameliorate cognitive decline.


The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer's disease.

  • Daniel Twohig‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Accumulating evidence demonstrating higher cerebrospinal fluid (CSF) α-synuclein (αSyn) levels and αSyn pathology in the brains of Alzheimer's disease (AD) patients suggests that αSyn is involved in the pathophysiology of AD. To investigate whether αSyn could be related to specific aspects of the pathophysiology present in both sporadic and familial disease, we quantified CSF levels of αSyn and assessed links to various disease parameters in a longitudinally followed cohort (n = 136) including patients with sporadic mild cognitive impairment (MCI) and AD, and in a cross-sectional sample from the Dominantly Inherited Alzheimer's Network (n = 142) including participants carrying autosomal dominant AD (ADAD) gene mutations and their non-mutation carrying family members.Our results show that sporadic MCI patients that developed AD over a period of two years exhibited higher baseline αSyn levels (p = 0.03), which inversely correlated to their Mini-Mental State Examination scores, compared to cognitively normal controls (p = 0.02). In the same patients, there was a dose-dependent positive association between CSF αSyn and the APOEε4 allele. Further, CSF αSyn levels were higher in symptomatic ADAD mutation carriers versus non-mutation carriers (p = 0.03), and positively correlated to the estimated years from symptom onset (p = 0.05) across all mutation carriers. In asymptomatic (Clinical Dementia Rating < 0.5) PET amyloid-positive ADAD mutation carriers CSF αSyn was positively correlated to 11C-Pittsburgh Compound-B (PiB) retention in several brain regions including the posterior cingulate, superior temporal and frontal cortical areas. Importantly, APOEε4-positive ADAD mutation carriers exhibited an association between CSF αSyn levels and mean cortical PiB retention (p = 0.032). In both the sporadic AD and ADAD cohorts we found several associations predominantly between CSF levels of αSyn, tau and amyloid-β1-40.Our results suggest that higher CSF αSyn levels are linked to AD pathophysiology at the early stages of disease development and to the onset of cognitive symptoms in both sporadic and autosomal dominant AD. We conclude that APOEε4 may promote the processes driven by αSyn, which in turn may reflect on molecular mechanisms linked to the asymptomatic build-up of amyloid plaque burden in brain regions involved in the early stages of AD development.


CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline.

  • Marc Suárez-Calvet‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

Progranulin (PGRN) is predominantly expressed by microglia in the brain, and genetic and experimental evidence suggests a critical role in Alzheimer's disease (AD). We asked whether PGRN expression is changed in a disease severity-specific manner in AD We measured PGRN in cerebrospinal fluid (CSF) in two of the best-characterized AD patient cohorts, namely the Dominant Inherited Alzheimer's Disease Network (DIAN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). In carriers of AD causing dominant mutations, cross-sectionally assessed CSF PGRN increased over the course of the disease and significantly differed from non-carriers 10 years before the expected symptom onset. In late-onset AD, higher CSF PGRN was associated with more advanced disease stages and cognitive impairment. Higher CSF PGRN was associated with higher CSF soluble TREM2 (triggering receptor expressed on myeloid cells 2) only when there was underlying pathology, but not in controls. In conclusion, we demonstrate that, although CSF PGRN is not a diagnostic biomarker for AD, it may together with sTREM2 reflect microglial activation during the disease.


Progress in gene therapy for prostate cancer.

  • Kamran A Ahmed‎ et al.
  • Frontiers in oncology‎
  • 2012‎

Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.


Diversity of Amyloid-beta Proteoforms in the Alzheimer's Disease Brain.

  • Norelle C Wildburger‎ et al.
  • Scientific reports‎
  • 2017‎

Amyloid-beta (Aβ) plays a key role in the pathogenesis of Alzheimer's disease (AD), but little is known about the proteoforms present in AD brain. We used high-resolution mass spectrometry to analyze intact Aβ from soluble aggregates and insoluble material in brains of six cases with severe dementia and pathologically confirmed AD. The soluble aggregates are especially relevant because they are believed to be the most toxic form of Aβ. We found a diversity of Aβ peptides, with 26 unique proteoforms including various N- and C-terminal truncations. N- and C-terminal truncations comprised 73% and 30%, respectively, of the total Aβ proteoforms detected. The Aβ proteoforms segregated between the soluble and more insoluble aggregates with N-terminal truncations predominating in the insoluble material and C- terminal truncations segregating into the soluble aggregates. In contrast, canonical Aβ comprised the minority of the identified proteoforms (15.3%) and did not distinguish between the soluble and more insoluble aggregates. The relative abundance of many truncated Aβ proteoforms did not correlate with post-mortem interval, suggesting they are not artefacts. This heterogeneity of Aβ proteoforms deepens our understanding of AD and offers many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development.


A randomized controlled study to evaluate the effect of bexarotene on amyloid-β and apolipoprotein E metabolism in healthy subjects.

  • Kaushik Ghosal‎ et al.
  • Alzheimer's & dementia (New York, N. Y.)‎
  • 2016‎

We conducted a phase Ib proof of mechanism trial to determine whether bexarotene (Targretin) increases central nervous system (CNS) apolipoprotein E (apoE) levels and alters Aβ metabolism in normal healthy individuals with the APOE ε3/ε3 genotype.


The PSEN1, p.E318G variant increases the risk of Alzheimer's disease in APOE-ε4 carriers.

  • Bruno A Benitez‎ et al.
  • PLoS genetics‎
  • 2013‎

The primary constituents of plaques (Aβ42/Aβ40) and neurofibrillary tangles (tau and phosphorylated forms of tau [ptau]) are the current leading diagnostic and prognostic cerebrospinal fluid (CSF) biomarkers for AD. In this study, we performed deep sequencing of APP, PSEN1, PSEN2, GRN, APOE and MAPT genes in individuals with extreme CSF Aβ42, tau, or ptau levels. One known pathogenic mutation (PSEN1 p.A426P), four high-risk variants for AD (APOE p.L46P, MAPT p.A152T, PSEN2 p.R62H and p.R71W) and nine novel variants were identified. Surprisingly, a coding variant in PSEN1, p.E318G (rs17125721-G) exhibited a significant association with high CSF tau (p = 9.2 × 10(-4)) and ptau (p = 1.8 × 10(-3)) levels. The association of the p.E318G variant with Aβ deposition was observed in APOE-ε4 allele carriers. Furthermore, we found that in a large case-control series (n = 5,161) individuals who are APOE-ε4 carriers and carry the p.E318G variant are at a risk of developing AD (OR = 10.7, 95% CI = 4.7-24.6) that is similar to APOE-ε4 homozygous (OR = 9.9, 95% CI = 7.2.9-13.6), and double the risk for APOE-ε4 carriers that do not carry p.E318G (OR = 3.9, 95% CI = 3.4-4.4). The p.E318G variant is present in 5.3% (n = 30) of the families from a large clinical series of LOAD families (n = 565) and exhibited a higher frequency in familial LOAD (MAF = 2.5%) than in sporadic LOAD (MAF = 1.6%) (p = 0.02). Additionally, we found that in the presence of at least one APOE-ε4 allele, p.E318G is associated with more Aβ plaques and faster cognitive decline. We demonstrate that the effect of PSEN1, p.E318G on AD susceptibility is largely dependent on an interaction with APOE-ε4 and mediated by an increased burden of Aβ deposition.


Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.

  • Denise Harold‎ et al.
  • Nature genetics‎
  • 2009‎

We undertook a two-stage genome-wide association study (GWAS) of Alzheimer's disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 x 10(-157)) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 x 10(-9)) and 5' to the PICALM gene (rs3851179, P = 1.9 x 10(-8)). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimer's disease in the combined dataset (rs11136000, P = 8.5 x 10(-10), odds ratio = 0.86; rs3851179, P = 1.3 x 10(-9), odds ratio = 0.86).


Alzheimer disease pathology in cognitively healthy elderly: a genome-wide study.

  • Patricia L Kramer‎ et al.
  • Neurobiology of aging‎
  • 2011‎

Many elderly individuals remain dementia-free throughout their life. However, some of these individuals exhibit Alzheimer disease neuropathology on autopsy, evidenced by neurofibrillary tangles (NFTs) in AD-specific brain regions. We conducted a genome-wide association study to identify genetic mechanisms that distinguish non-demented elderly with a heavy NFT burden from those with a low NFT burden. The study included 299 non-demented subjects with autopsy (185 subjects with low and 114 with high NFT levels). Both a genotype test, using logistic regression, and an allele test provided consistent evidence that variants in the RELN gene are associated with neuropathology in the context of cognitive health. Immunohistochemical data for reelin expression in AD-related brain regions added support for these findings. Reelin signaling pathways modulate phosphorylation of tau, the major component of NFTs, either directly or through β-amyloid pathways that influence tau phosphorylation. Our findings suggest that up-regulation of reelin may be a compensatory response to tau-related or beta-amyloid stress associated with AD even prior to the onset of dementia.


Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS).

  • Sandra Weintraub‎ et al.
  • Alzheimer disease and associated disorders‎
  • 2018‎

The neuropsychological battery of the Uniform Data Set (UDSNB) was implemented in 2005 by the National Institute on Aging (NIA) Alzheimer Disease Centers program to measure cognitive performance in dementia and mild cognitive impairment due to Alzheimer Disease. This paper describes a revision, the UDSNB 3.0.


Stroke infarct volume estimation in fixed tissue: Comparison of diffusion kurtosis imaging to diffusion weighted imaging and histology in a rodent MCAO model.

  • Vibeke Bay‎ et al.
  • PloS one‎
  • 2018‎

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.


Association of Functional Impairments and Co-Morbid Conditions with Driving Performance among Cognitively Normal Older Adults.

  • David B Carr‎ et al.
  • PloS one‎
  • 2016‎

To examine the relationship between key functional impairments, co-morbid conditions and driving performance in a sample of cognitively normal older adults.


A comprehensive screening of copy number variability in dementia with Lewy bodies.

  • Celia Kun-Rodrigues‎ et al.
  • Neurobiology of aging‎
  • 2019‎

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease.

  • Stephanie A Schultz‎ et al.
  • Neurobiology of disease‎
  • 2020‎

Neurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.


Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning.

  • Nicolai Franzmeier‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2020‎

Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer's disease (AD) is a critical yet unmet clinical challenge.


The Role of the Human Brain Neuron-Glia-Synapse Composition in Forming Resting-State Functional Connectivity Networks.

  • Sayan Kahali‎ et al.
  • Brain sciences‎
  • 2021‎

While significant progress has been achieved in studying resting-state functional networks in a healthy human brain and in a wide range of clinical conditions, many questions related to their relationship to the brain's cellular constituents remain. Here, we use quantitative Gradient-Recalled Echo (qGRE) MRI for mapping the human brain cellular composition and BOLD (blood-oxygen level-dependent) MRI to explore how the brain cellular constituents relate to resting-state functional networks. Results show that the BOLD signal-defined synchrony of connections between cellular circuits in network-defined individual functional units is mainly associated with the regional neuronal density, while the between-functional units' connectivity strength is also influenced by the glia and synaptic components of brain tissue cellular constituents. These mechanisms lead to a rather broad distribution of resting-state functional network properties. Visual networks with the highest neuronal density (but lowest density of glial cells and synapses) exhibit the strongest coherence of the BOLD signal as well as the strongest intra-network connectivity. The Default Mode Network (DMN) is positioned near the opposite part of the spectrum with relatively low coherence of the BOLD signal but with a remarkably balanced cellular contents, enabling DMN to have a prominent role in the overall organization of the brain and hierarchy of functional networks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: