Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Whole-exome analysis of foetal autopsy tissue reveals a frameshift mutation in OBSL1, consistent with a diagnosis of 3-M Syndrome.

  • Christian R Marshall‎ et al.
  • BMC genomics‎
  • 2015‎

We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants.


CHD2 haploinsufficiency is associated with developmental delay, intellectual disability, epilepsy and neurobehavioural problems.

  • Sébastien Chénier‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2014‎

The chromodomain helicase DNA binding domain (CHD) proteins modulate gene expression via their ability to remodel chromatin structure and influence histone acetylation. Recent studies have shown that CHD2 protein plays a critical role in embryonic development, tumor suppression and survival. Like other genes encoding members of the CHD family, pathogenic mutations in the CHD2 gene are expected to be implicated in human disease. In fact, there is emerging evidence suggesting that CHD2 might contribute to a broad spectrum of neurodevelopmental disorders. Despite growing evidence, a description of the full phenotypic spectrum of this condition is lacking.


Clinically relevant copy number variations detected in cerebral palsy.

  • Maryam Oskoui‎ et al.
  • Nature communications‎
  • 2015‎

Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (∼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families.


Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome.

  • Daniele Merico‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes.


Indexing Effects of Copy Number Variation on Genes Involved in Developmental Delay.

  • Mohammed Uddin‎ et al.
  • Scientific reports‎
  • 2016‎

A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P < 1.64 × 10(-15)) enrichment of critical-exons within rare CNVs in cases compared to controls. Separately, we used a weighted gene co-expression network analysis (WGCNA) to construct an unbiased protein module from prenatal and adult tissues and found it significantly enriched for critical exons in prenatal (P < 1.15 × 10(-50), OR = 2.11) and adult (P < 6.03 × 10(-18), OR = 1.55) tissues. WGCNA yielded 1,206 proteins for which we prioritized the corresponding genes as likely to have a role in neurodevelopmental disorders. We compared the gene lists obtained from critical-exon and WGCNA analysis and found 438 candidate genes associated with CNVs annotated as pathogenic, or as variants of uncertain significance (VOUS), from among 10,619 developmental delay cases. We identified genes containing CNVs previously considered to be VOUS to be new candidate genes for neurodevelopmental disorders (GIT1, MVB12B and PPP1R9A) demonstrating the utility of this strategy to index the clinical effects of CNVs.


SHANK1 Deletions in Males with Autism Spectrum Disorder.

  • Daisuke Sato‎ et al.
  • American journal of human genetics‎
  • 2012‎

Recent studies have highlighted the involvement of rare (<1% frequency) copy-number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1.


De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy.

  • Mehdi Zarrei‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2018‎

PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.


RCL1 copy number variants are associated with a range of neuropsychiatric phenotypes.

  • Catherine A Brownstein‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.


Comparing genome sequencing technologies to improve rare disease diagnostics: a protocol for the evaluation of a pilot project, Genome-wide Sequencing Ontario.

  • Robin Z Hayeems‎ et al.
  • CMAJ open‎
  • 2022‎

Genome-wide sequencing has emerged as a promising strategy for the timely diagnosis of rare diseases, but it is not yet available as a clinical test performed in Canadian diagnostic laboratories. We describe the protocol for evaluating a 2-year pilot project, Genome-wide Sequencing Ontario, to offer high-quality clinical genome-wide sequencing in Ontario, Canada.


Adult expression of a 3q13.31 microdeletion.

  • Chelsea Lowther‎ et al.
  • Molecular cytogenetics‎
  • 2014‎

The emerging 3q13.31 microdeletion syndrome appears to encompass diverse neurodevelopmental conditions. However, the 3q13.31 deletion is rare and few adult cases have yet been reported. We examined a cohort with schizophrenia (n = 459) and adult control subjects (n = 26,826) using high-resolution microarray technology for deletions and duplications at the 3q13.31 locus.


Rare deletions at the neurexin 3 locus in autism spectrum disorder.

  • Andrea K Vaags‎ et al.
  • American journal of human genetics‎
  • 2012‎

The three members of the human neurexin gene family, neurexin 1 (NRXN1), neurexin 2 (NRXN2), and neurexin 3 (NRXN3), encode neuronal adhesion proteins that have important roles in synapse development and function. In autism spectrum disorder (ASD), as well as in other neurodevelopmental conditions, rare exonic copy-number variants and/or point mutations have been identified in the NRXN1 and NRXN2 loci. We present clinical characterization of four index cases who have been diagnosed with ASD and who possess rare inherited or de novo microdeletions at 14q24.3-31.1, a region that overlaps exons of the alpha and/or beta isoforms of NRXN3. NRXN3 deletions were found in one father with subclinical autism and in a carrier mother and father without formal ASD diagnoses, indicating issues of penetrance and expressivity at this locus. Notwithstanding these clinical complexities, this report on ASD-affected individuals who harbor NRXN3 exonic deletions advances the understanding of the genetic etiology of autism, further enabling molecular diagnoses.


Dietary patterns and internalizing symptoms in children and adolescents: A meta-analysis.

  • Laura Orlando‎ et al.
  • The Australian and New Zealand journal of psychiatry‎
  • 2022‎

Studies of child and adolescent internalizing symptoms and dietary pattern have produced mixed results.


Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of copy number variation.

  • Matthew J Gazzellone‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2016‎

Obsessive-compulsive disorder (OCD) is a heterogeneous neuropsychiatric condition, thought to have a significant genetic component. When onset occurs in childhood, affected individuals generally exhibit different characteristics from adult-onset OCD, including higher prevalence in males and increased heritability. Since neuropsychiatric conditions are associated with copy number variations (CNVs), we considered their potential role in the etiology of OCD.


Whole Genome Sequencing Expands Diagnostic Utility and Improves Clinical Management in Pediatric Medicine.

  • Dimitri J Stavropoulos‎ et al.
  • NPJ genomic medicine‎
  • 2016‎

The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.


Gene copy number variation and pediatric mental health/neurodevelopment in a general population.

  • Mehdi Zarrei‎ et al.
  • Human molecular genetics‎
  • 2023‎

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression.

  • Chelsea Lowther‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2017‎

The purpose of the current study was to assess the penetrance of NRXN1 deletions.


Complex genomic rearrangements in the dystrophin gene due to replication-based mechanisms.

  • Berivan Baskin‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2014‎

Genomic rearrangements such as intragenic deletions and duplications are the most prevalent type of mutations in the dystrophin gene resulting in Duchenne and Becker muscular dystrophy (D/BMD). These copy number variations (CNVs) are nonrecurrent and can result from either nonhomologous end joining (NHEJ) or microhomology-mediated replication-dependent recombination (MMRDR). We characterized five DMD patients with complex genomic rearrangements using a combination of MLPA/mRNA transcript analysis/custom array comparative hybridization arrays (CGH) and breakpoint sequence analysis to investigate the mechanisms for these rearrangements. Two patients had complex rearrangements that involved microhomologies at breakpoints. One patient had a noncontiguous insertion of 89.7 kb chromosome 4 into intron 43 of DMD involving three breakpoints with 2-5 bp microhomology at the junctions. A second patient had an inversion of exon 44 flanked by intronic deletions with two breakpoint junctions each showing 2 bp microhomology. The third patient was a female with an inherited deletion of exon 47 in DMD on the maternal allele and a de novo noncontiguous duplication of exons 45-49 in DMD and MID1 on the paternal allele. The other two patients harbored complex noncontiguous duplications within the dystrophin gene. We propose a replication-based mechanisms for all five complex DMD rearrangements. This study identifies additional underlying mechanisms in DMD, and provides insight into the molecular bases of these genomic rearrangements.


Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test.

  • Anath C Lionel‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2018‎

PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.


A large data resource of genomic copy number variation across neurodevelopmental disorders.

  • Mehdi Zarrei‎ et al.
  • NPJ genomic medicine‎
  • 2019‎

Copy number variations (CNVs) are implicated across many neurodevelopmental disorders (NDDs) and contribute to their shared genetic etiology. Multiple studies have attempted to identify shared etiology among NDDs, but this is the first genome-wide CNV analysis across autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), and obsessive-compulsive disorder (OCD) at once. Using microarray (Affymetrix CytoScan HD), we genotyped 2,691 subjects diagnosed with an NDD (204 SCZ, 1,838 ASD, 427 ADHD and 222 OCD) and 1,769 family members, mainly parents. We identified rare CNVs, defined as those found in <0.1% of 10,851 population control samples. We found clinically relevant CNVs (broadly defined) in 284 (10.5%) of total subjects, including 22 (10.8%) among subjects with SCZ, 209 (11.4%) with ASD, 40 (9.4%) with ADHD, and 13 (5.6%) with OCD. Among all NDD subjects, we identified 17 (0.63%) with aneuploidies and 115 (4.3%) with known genomic disorder variants. We searched further for genes impacted by different CNVs in multiple disorders. Examples of NDD-associated genes linked across more than one disorder (listed in order of occurrence frequency) are NRXN1, SEH1L, LDLRAD4, GNAL, GNG13, MKRN1, DCTN2, KNDC1, PCMTD2, KIF5A, SYNM, and long non-coding RNAs: AK127244 and PTCHD1-AS. We demonstrated that CNVs impacting the same genes could potentially contribute to the etiology of multiple NDDs. The CNVs identified will serve as a useful resource for both research and diagnostic laboratories for prioritization of variants.


Genome sequencing as a platform for pharmacogenetic genotyping: a pediatric cohort study.

  • Iris Cohn‎ et al.
  • NPJ genomic medicine‎
  • 2017‎

Whole-genome sequencing and whole-exome sequencing have proven valuable for diagnosing inherited diseases, particularly in children. However, usage of sequencing data as a pharmacogenetic screening tool to ensure medication safety and effectiveness remains to be explored. Sixty-seven variants in 19 genes with known effects on drug response were compared between genome sequencing and targeted genotyping data for coverage and concordance in 98 pediatric patients. We used targeted genotyping data as a benchmark to assess accuracy of variant calling, and to identify copy number variations of the CYP2D6 gene. We then predicted clinical impact of these variants on drug therapy. We find genotype concordance across those panels to be > 97%. Concordance of CYP2D6 predicted phenotype between estimates of whole-genome sequencing and targeted genotyping panel were 90%; a result from a lower coverage depth or variant calling difficulties in our whole-genome sequencing data when copy number variation and/or the CYP2D6*4 haplotype were present. Importantly, 95 children had at least one clinically actionable pharmacogenetic variant. Diagnostic genomic sequencing data can be used for pre-emptive pharmacogenetic screening. However, concordance between genome-wide sequencing and target genotyping needs to be characterized for each of the pharmacologically important genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: