Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.

  • Felix R Day‎ et al.
  • Nature genetics‎
  • 2015‎

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.


The p53 transcriptional pathway is preserved in ATMmutated and NOTCH1mutated chronic lymphocytic leukemias.

  • Emmanouil Athanasakis‎ et al.
  • Oncotarget‎
  • 2014‎

By using next generation sequencing, we have analyzed 108 B chronic lymphocytic leukemia (B-CLL) patients. Among genes involved in the TP53 pathway, we found frequent mutations in ATM (n=18), TP53 (n=10) and NOTCH1 (n=10) genes, rare mutations of NOTCH2 (n=2) and CDKN1A/p21 (n=1) and no mutations in BAX, MDM2, TNFRSF10A and TNFRSF10B genes. The in vitro treatment of primary B-CLL cells with the activator of p53 Nutlin-3 induced the transcription of p53 target genes, without significant differences between the B-CLL without mutations and those harboring either ATM or NOTCH1mutations. On the other hand, the subgroup of TP53mutated B-CLL exhibited a significantly lower induction of the p53 target genes in response to Nutlin-3 as compared to the other B-CLL samples. However, among the TP53mutated B-CLL, those showing mutations in the high hot spot region of the DNA binding domain [273-280 aa] maintained a significantly higher p53-dependent transcriptional activity as compared to the other TP53mutated B-CLL samples. Since the ability to elicit a p53-dependent transcriptional activity in vitro has a positive prognostic significance, our data suggest that ATMmutated, NOTCH1mutated and surprisingly, also a subset of TP53mutated B-CLL patients might benefit from therapeutic combinations including small molecule activator of the p53 pathway.


Molecular diagnosis of Usher syndrome: application of two different next generation sequencing-based procedures.

  • Danilo Licastro‎ et al.
  • PloS one‎
  • 2012‎

Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.


PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss.

  • Giorgia Girotto‎ et al.
  • Scientific reports‎
  • 2015‎

Hereditary Hearing Loss (HHL) is an extremely heterogeneous disorder. Approximately 30 out of 80 known HHL genes are associated with autosomal dominant forms. Here, we identified PSIP1/LEDGF (isoform p75) as a novel strong candidate gene involved in dominant HHL. Using exome sequencing we found a frameshift deletion (c.1554_1555del leading to p.E518Dfs*2) in an Italian pedigree affected by sensorineural mild-to-moderate HHL but also showing a variable eye phenotype (i.e. uveitis, optic neuropathy). This deletion led to a premature stop codon (p.T519X) with truncation of the last 12 amino acids. PSIP1 was recently described as a transcriptional co-activator regulated by miR-135b in vestibular hair cells of the mouse inner ear as well as a possible protector against photoreceptor degeneration. Here, we demonstrate that it is ubiquitously expressed in the mouse inner ear. The PSIP1 mutation is associated with a peculiar audiometric slope toward the high frequencies. These findings indicate that PSIP1 likely plays an important role in HHL.


Directional dominance on stature and cognition in diverse human populations.

  • Peter K Joshi‎ et al.
  • Nature‎
  • 2015‎

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.

  • Symen Ligthart‎ et al.
  • American journal of human genetics‎
  • 2018‎

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.


Next-generation sequencing identified SPATC1L as a possible candidate gene for both early-onset and age-related hearing loss.

  • Anna Morgan‎ et al.
  • European journal of human genetics : EJHG‎
  • 2019‎

Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss.


LINE-1 regulates cortical development by acting as long non-coding RNAs.

  • Damiano Mangoni‎ et al.
  • Nature communications‎
  • 2023‎

Long Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types. In cortical cultured neurons, L1 RNAs are mainly associated to chromatin and interact with the Polycomb Repressive Complex 2 (PRC2) protein subunits enhancer of Zeste homolog 2 (Ezh2) and suppressor of zeste 12 (Suz12). L1 RNA silencing influences PRC2's ability to bind a portion of its targets and the deposition of tri-methylated histone H3 (H3K27me3) marks. Our results position L1 RNAs as crucial signalling hubs for genome-wide chromatin remodelling, enabling the fine-tuning of gene expression during brain development and evolution.


Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss.

  • Dragana Vuckovic‎ et al.
  • Human molecular genetics‎
  • 2015‎

Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.


Rare coding variants and X-linked loci associated with age at menarche.

  • Kathryn L Lunetta‎ et al.
  • Nature communications‎
  • 2015‎

More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ∼3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P<5 × 10(-8)). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P=9.4 × 10(-13)) and FAAH2 (rs5914101, P=4.9 × 10(-10)). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P=2.8 × 10(-11)), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain ∼0.5% variance, indicating that these overlooked sources of variation do not substantially explain the 'missing heritability' of this complex trait.


Type I interferon-mediated autoinflammation due to DNase II deficiency.

  • Mathieu P Rodero‎ et al.
  • Nature communications‎
  • 2017‎

Microbial nucleic acid recognition serves as the major stimulus to an antiviral response, implying a requirement to limit the misrepresentation of self nucleic acids as non-self and the induction of autoinflammation. By systematic screening using a panel of interferon-stimulated genes we identify two siblings and a singleton variably demonstrating severe neonatal anemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies. In both families we identify biallelic mutations in DNASE2, associated with a loss of DNase II endonuclease activity. We record increased interferon alpha protein levels using digital ELISA, enhanced interferon signaling by RNA-Seq analysis and constitutive upregulation of phosphorylated STAT1 and STAT3 in patient lymphocytes and monocytes. A hematological disease transcriptomic signature and increased numbers of erythroblasts are recorded in patient peripheral blood, suggesting that interferon might have a particular effect on hematopoiesis. These data define a type I interferonopathy due to DNase II deficiency in humans.


Case Report: Whole Exome Sequencing Revealed Disease-Causing Variants in Two Genes in a Patient With Autism Spectrum Disorder, Intellectual Disability, Hyperactivity, Sleep and Gastrointestinal Disturbances.

  • Maria Cerminara‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Autism Spectrum Disorder (ASD) refers to a broad range of conditions characterized by difficulties in communication, social interaction and behavior, and may be accompanied by other medical or psychiatric conditions. Patients with ASD and comorbidities are often difficult to diagnose because of the tendency to consider the multiple symptoms as the presentation of a complicated syndromic form. This view influences variant filtering which might ignore causative variants for specific clinical features shown by the patient. Here we report on a male child diagnosed with ASD, showing cognitive and motor impairments, stereotypies, hyperactivity, sleep, and gastrointestinal disturbances. The analysis of whole exome sequencing (WES) data with bioinformatic tools for oligogenic diseases helped us to identify two major previously unreported pathogenetic variants: a maternally inherited missense variant (p.R4122H) in HUWE1, an ubiquitin protein ligase associated to X-linked intellectual disability and ASD; and a de novo stop variant (p.Q259X) in TPH2, encoding the tryptophan hydroxylase 2 enzyme involved in serotonin synthesis and associated with susceptibility to attention deficit-hyperactivity disorder (ADHD). TPH2, expressed in central and peripheral nervous tissues, modulates various physiological functions, including gut motility and sleep. To the best of our knowledge, this is the first case presenting with ASD, cognitive impairment, sleep, and gastrointestinal disturbances linked to both HUWE1 and TPH2 genes. Our findings could contribute to the existing knowledge on clinical and genetic diagnosis of patients with ASD presentation with comorbidities.


Rare and low-frequency coding variants alter human adult height.

  • Eirini Marouli‎ et al.
  • Nature‎
  • 2017‎

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


A novel P2RX2 mutation in an Italian family affected by autosomal dominant nonsyndromic hearing loss.

  • Flavio Faletra‎ et al.
  • Gene‎
  • 2014‎

Hereditary hearing loss (HHL) is a common disorder accounting for at least 60% of prelingual deafness. It is characterized by a large genetic heterogeneity, and despite the presence of a major gene, still there is a need to search for new causative mutations/genes. Very recently, a mutation within ATP-gated P2X(2) receptor (ligand-gated ion channel, purinergic receptor 2) gene (P2RX2) at DNFA41 locus has been reported leading to a bilateral and symmetrical sensorineural non-syndromic autosomal dominant HHL in two Chinese families. We performed a linkage analysis in a large Italian family with a dominant pattern of inheritance showing a significant 3.31 LOD score in a 2Mb region overlapping with the DNFA41 locus. Molecular analyses of P2RX2 identified a novel missense mutation (p.Gly353Arg) affecting a residue highly conserved across species. Visual inspection of the protein structure as obtained from comparative modeling suggests that substitution of the small glycine residue with a charged bulky residue such as an arginine that is close to the 'neck' of the region responsible for ion channel gating should have a high energetic cost and should lead to a severely destabilization of the fold. The identification of a second most likely causative mutation in P2RX2 gene further supports the possible role of this gene in causing autosomal dominant HHL.


Genetic landscape of populations along the Silk Road: admixture and migration patterns.

  • Massimo Mezzavilla‎ et al.
  • BMC genetics‎
  • 2014‎

The ancient Silk Road has been a trading route between Europe and Central Asia from the 2(nd) century BCE to the 15(th) century CE. While most populations on this route have been characterized, the genetic background of others remains poorly understood, and little is known about past migration patterns. The scientific expedition "Marco Polo" has recently collected genetic and phenotypic data in six regions (Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Tajikistan) along the Silk Road to study the genetics of a number of phenotypes.


Linkage study and exome sequencing identify a BDP1 mutation associated with hereditary hearing loss.

  • Giorgia Girotto‎ et al.
  • PloS one‎
  • 2013‎

Nonsyndromic Hereditary Hearing Loss is a common disorder accounting for at least 60% of prelingual deafness. GJB2 gene mutations, GJB6 deletion, and the A1555G mitochondrial mutation play a major role worldwide in causing deafness, but there is a high degree of genetic heterogeneity and many genes involved in deafness have not yet been identified. Therefore, there remains a need to search for new causative mutations. In this study, a combined strategy using both linkage analysis and sequencing identified a new mutation causing hearing loss. Linkage analysis identified a region of 40 Mb on chromosome 5q13 (LOD score 3.8) for which exome sequencing data revealed a mutation (c.7873 T>G leading to p.*2625Gluext*11) in the BDP1 gene (B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB) in patients from a consanguineous Qatari family of second degree, showing bilateral, post-lingual, sensorineural moderate to severe hearing impairment. The mutation disrupts the termination codon of the transcript resulting in an elongation of 11 residues of the BDP1 protein. This elongation does not contain any known motif and is not conserved across species. Immunohistochemistry studies carried out in the mouse inner ear showed Bdp1 expression within the endothelial cells in the stria vascularis, as well as in mesenchyme-derived cells surrounding the cochlear duct. The identification of the BDP1 mutation increases our knowledge of the molecular bases of Nonsyndromic Hereditary Hearing Loss and provides new opportunities for the diagnosis and treatment of this disease in the Qatari population.


Molecular epidemiology of Usher syndrome in Italy.

  • Diego Vozzi‎ et al.
  • Molecular vision‎
  • 2011‎

Usher syndrome is an autosomal recessive disorder characterized by hearing and vision loss. Usher syndrome is divided into three clinical subclasses (type 1, type 2, and type 3), which differ in terms of the severity and progression of hearing loss and the presence or absence of vestibular symptoms. Usher syndrome is defined by significant genetic heterogeneity, with at least 12 distinct loci described and 9 genes identified. This study aims to provide a molecular epidemiology report of Usher syndrome in Italy.


Type I interferon activation in RAS-associated autoimmune leukoproliferative disease (RALD).

  • Riccardo Papa‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2021‎

RAS-associated autoimmune leukoproliferative disease (RALD) is a rare immune dysregulation syndrome caused by somatic gain-of-function mutations of either NRAS or KRAS gene in hematopoietic cells. We describe a 27-year-old patient presenting at 5 months of age with recurrent infections and generalized lymphadenopathy who developed a complex multi-organ autoimmune syndrome with hypogammaglobulinemia, partially controlled with oral steroids, hydroxichloroquine, mofetil mycophenolate and IVIG prophylaxis. Activation of type I interferon pathway was observed in peripheral blood. Since 18 years of age, the patient developed regenerative nodular hyperplasia of the liver evolving into hepatopulmonary syndrome. Whole exome sequencing analysis of the peripheral blood DNA showed the NRAS p.Gly13Asp mutation validated as somatic. Our report highlights the possibility of detecting somatic NRAS gene mutations in patients with inflammatory immune dysregulation and type I interferon activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: