Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 88 papers

Formation of the digestive system in zebrafish. II. Pancreas morphogenesis.

  • Holly A Field‎ et al.
  • Developmental biology‎
  • 2003‎

Recent studies have suggested that the zebrafish pancreas develops from a single pancreatic anlage, located on the dorsal aspect of the developing gut. However, using a transgenic zebrafish line that expresses GFP throughout the endoderm, we report that, in fact, two pancreatic anlagen join to form the pancreas. One anlage is located on the dorsal aspect of the developing gut and is present by 24 h postfertilization (hpf), the second anlage is located on the ventral aspect of the developing gut in a position anterior to the dorsal anlage and is present by 40 hpf. These two buds merge by 52 hpf to form the pancreas. Using heart and soul mutant embryos, in which the pancreatic anlagen most often do not fuse, we show that the posterior bud generates only endocrine tissue, while the anterior bud gives rise to the pancreatic duct and exocrine cells. Interestingly, at later stages, the anterior bud also gives rise to a small number of endocrine cells usually present near the pancreatic duct. Altogether, these studies show that in zebrafish, as in the other model systems analyzed to date, the pancreas arises from multiple buds. To analyze whether other features of pancreas development are conserved and investigate the influence of surrounding tissues on pancreas development, we examined the role of the vasculature in this process. Contrary to reports in other model systems, we find that, although vascular endothelium is in contact with the posterior bud throughout pancreas development, its absence in cloche mutant embryos does not appear to affect the early morphogenesis or differentiation of the pancreas.


Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration.

  • Ryan M Anderson‎ et al.
  • Developmental biology‎
  • 2009‎

Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.


Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish.

  • Takuya F Sakaguchi‎ et al.
  • Current biology : CB‎
  • 2008‎

Emerging evidence indicates that paracrine signals from endothelial cells play a role in tissue differentiation and organ formation [1-3]. Here, we identify a novel role for endothelial cells in modulating hepatocyte polarization during liver organogenesis. We find that in zebrafish, the apical domain of the hepatocytes predicts the location of the intrahepatic biliary network. The refinement of hepatocyte polarization coincides with the invasion of endothelial cells into the liver, and these endothelial cells migrate along the maturing basal surface of the hepatocytes. Using genetic, pharmacological, and transplantation experiments, we provide evidence that endothelial cells influence the polarization of the adjacent hepatocytes. This influence of endothelial cells on hepatocytes is mediated at least in part by the cell-surface protein Heart of glass and contributes to the establishment of coordinately aligned hepatocyte apical membranes and evenly spaced intrahepatic conduits.


Interferon gamma signaling positively regulates hematopoietic stem cell emergence.

  • Suphansa Sawamiphak‎ et al.
  • Developmental cell‎
  • 2014‎

Vertebrate hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region from "hemogenic" endothelium. Here we show that the proinflammatory cytokine interferon-γ (IFN-γ) and its receptor Crfb17 positively regulate HSC development in zebrafish. This regulation does not appear to modulate the proliferation or survival of HSCs or endothelial cells, but rather the endothelial-to-HSC transition. Notch signaling and blood flow positively regulate the expression of ifng and crfb17 in the AGM. Notably, IFN-γ overexpression partially rescues the HSC loss observed in the absence of blood flow or Notch signaling. Importantly, IFN-γ signaling acts cell autonomously to control the endothelial-to-HSC transition. IFN-γ activates Stat3, an atypical transducer of IFN-γ signaling, in the AGM, and Stat3 inhibition decreases HSC formation. Together, our findings uncover a developmental role for an inflammatory cytokine and place its action downstream of Notch signaling and blood flow to control Stat3 activation and HSC emergence.


Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.

  • Naoki Tsuji‎ et al.
  • PloS one‎
  • 2014‎

Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.


Isl2b regulates anterior second heart field development in zebrafish.

  • Hagen R Witzel‎ et al.
  • Scientific reports‎
  • 2017‎

After initial formation, the heart tube grows by addition of second heart field progenitor cells to its poles. The transcription factor Isl1 is expressed in the entire second heart field in mouse, and Isl1-deficient mouse embryos show defects in arterial and venous pole development. The expression of Isl1 is conserved in zebrafish cardiac progenitors; however, Isl1 is required for cardiomyocyte differentiation only at the venous pole. Here we show that Isl1 homologues are expressed in specific patterns in the developing zebrafish heart and play distinct roles during cardiac morphogenesis. In zebrafish, isl2a mutants show defects in cardiac looping, whereas isl2b is required for arterial pole development. Moreover, Isl2b controls the expression of key cardiac transcription factors including mef2ca, mef2cb, hand2 and tbx20. The specific roles of individual Islet family members in the development of distinct regions of the zebrafish heart renders this system particularly well-suited for dissecting Islet-dependent gene regulatory networks controlling the behavior and function of second heart field progenitors in distinct steps of cardiac development.


Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein.

  • Andrew L Koenig‎ et al.
  • Developmental biology‎
  • 2016‎

The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs.


Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis.

  • Vera Mugoni‎ et al.
  • Cell‎
  • 2013‎

Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity.


Analysis of sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors.

  • Bartosz Balczerski‎ et al.
  • Developmental biology‎
  • 2012‎

Development of the head skeleton involves reciprocal interactions between cranial neural crest cells (CNCCs) and the surrounding pharyngeal endoderm and ectoderm. Whereas elegant experiments in avians have shown a prominent role for the endoderm in facial skeleton development, the relative functions of the endoderm in growth versus regional identity of skeletal precursors have remained unclear. Here we describe novel craniofacial defects in zebrafish harboring mutations in the Sphingosine-1-phospate (S1P) type 2 receptor (s1pr2) or the S1P transporter Spinster 2 (spns2), and we show that S1P signaling functions in the endoderm for the proper growth and positioning of the jaw skeleton. Surprisingly, analysis of s1pr2 and spns2 mutants, as well as sox32 mutants that completely lack endoderm, reveals that the dorsal-ventral (DV) patterning of jaw skeletal precursors is largely unaffected even in the absence of endoderm. Instead, we observe reductions in the ectodermal expression of Fibroblast growth factor 8a (Fgf8a), and transgenic misexpression of Shha restores fgf8a expression and partially rescues the growth and differentiation of jaw skeletal precursors. Hence, we propose that the S1P-dependent anterior foregut endoderm functions primarily through Shh to regulate the growth but not DV patterning of zebrafish jaw precursors.


Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b.

  • Isla D Cheung‎ et al.
  • Developmental biology‎
  • 2012‎

The intrahepatic biliary ducts transport bile produced by the hepatocytes out of the liver. Defects in biliary cell differentiation and biliary duct remodeling cause a variety of congenital diseases including Alagille Syndrome and polycystic liver disease. While the molecular pathways regulating biliary cell differentiation have received increasing attention (Lemaigre, 2010), less is known about the cellular behavior underlying biliary duct remodeling. Here, we have identified a novel gene, claudin 15-like b (cldn15lb), which exhibits a unique and dynamic expression pattern in the hepatocytes and biliary epithelial cells in zebrafish. Claudins are tight junction proteins that have been implicated in maintaining epithelial polarity, regulating paracellular transport, and providing barrier function. In zebrafish cldn15lb mutant livers, tight junctions are observed between hepatocytes, but these cells show polarization defects as well as canalicular malformations. Furthermore, cldn15lb mutants show abnormalities in biliary duct morphogenesis whereby biliary epithelial cells remain clustered together and form a disorganized network. Our data suggest that Cldn15lb plays an important role in the remodeling process during biliary duct morphogenesis. Thus, cldn15lb mutants provide a novel in vivo model to study the role of tight junction proteins in the remodeling of the biliary network and hereditary cholestasis.


Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression.

  • Satish Casie Chetty‎ et al.
  • Developmental biology‎
  • 2017‎

Vasculogenesis involves the differentiation of vascular endothelial progenitors de novo from undifferentiated mesoderm, their migration and coalescence to form the major embryonic vessels and the acquisition of arterial or venous identity. Vascular Endothelial Growth Factor (Vegf) signaling plays multiple roles during vascular development. However, its function during embryonic vasculogenesis has been controversial. Previous studies have implicated Vegf signaling in either regulating arteriovenous specification or overall vascular endothelial differentiation. To clarify the role of Vegf in embryonic vasculogenesis and identify its downstream targets, we used chemical inhibitors of Vegf receptor (Vegfr) signaling in zebrafish embryos as well as zebrafish genetic mutants. A high level of chemical inhibition of Vegfr signaling resulted in the reduction of overall vascular endothelial marker gene expression, including downregulation of both arterial and venous markers, ultimately leading to the apoptosis of vascular endothelial cells. In contrast, a low level of Vegfr inhibition specifically blocked arterial specification while the expression of venous markers appeared largely unaffected or increased. Inhibition of Vegfr signaling prior to the initiation of vasculogenesis reduced overall vascular endothelial differentiation, while inhibition of Vegfr signaling starting at mid-somitogenesis stages largely inhibited arterial specification. Conversely, Vegf overexpression resulted in the expansion of both arterial and pan-endothelial markers, while the expression of several venous-specific markers was downregulated. We further show that Vegf signaling affects overall endothelial differentiation by modulating the expression of the ETS transcription factor etv2/ etsrp. etv2 expression was downregulated in Vegfr- inhibited embryos, and expanded in Vegfaa-overexpressing embryos. Furthermore, vascular-specific overexpression of etv2 in Vegfr-inhibited embryos rescued defects in vascular endothelial differentiation. Similarly, vegfaa genetic mutants displayed a combination of the two phenotypes observed with chemical Vegfr inhibition: the expression of arterial and pan-endothelial markers including etv2 was downregulated while the expression of most venous markers was either expanded or unchanged. Based on these results we propose a revised model which explains the different phenotypes observed upon inhibition of Vegf signaling: low levels of Vegf signaling promote overall vascular endothelial differentiation and cell survival by upregulating etv2 expression, while high levels of Vegf signaling promote arterial and inhibit venous specification.


Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish.

  • Anna M Sokol‎ et al.
  • PLoS genetics‎
  • 2018‎

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases.


Proteolysis regulates cardiomyocyte maturation and tissue integration.

  • Ryuichi Fukuda‎ et al.
  • Nature communications‎
  • 2017‎

Tissue integrity is critical for organ formation and function. During heart development, cardiomyocytes differentiate and integrate to form a coherent tissue that contracts synchronously. However, the molecular mechanisms regulating cardiac tissue integrity are poorly understood. Here we show that proteolysis, via the E3 ubiquitin ligase ASB2, regulates cardiomyocyte maturation and tissue integrity. Cardiomyocytes in asb2b zebrafish mutants fail to terminally differentiate, resulting in reduced cardiac contractility and output. Mosaic analyses reveal a cell-autonomous requirement for Asb2b in cardiomyocytes for their integration as asb2b mutant cardiomyocytes are unable to meld into wild-type myocardial tissue. In vitro and in vivo data indicate that ASB2 negatively regulates TCF3, a bHLH transcription factor. TCF3 must be degraded for cardiomyocyte maturation, as TCF3 gain-of-function causes a number of phenotypes associated with cardiomyocyte dedifferentiation. Overall, our results show that proteolysis has an important role in cardiomyocyte maturation and the formation of a coherent myocardial tissue.


Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium.

  • Oliver A Stone‎ et al.
  • Developmental cell‎
  • 2019‎

Endothelial cells (ECs), which line blood and lymphatic vessels, are generally described to come from the lateral plate mesoderm despite experimental evidence for a broader source of origin, including the paraxial mesoderm (PXM). Current dogma suggests that following specification from mesoderm, local environmental cues establish the distinct molecular and functional characteristics of ECs in different vascular beds. Here we present evidence to challenge this view, showing that lymphatic EC fate is imprinted during transition through the PXM lineage. We show that PXM-derived cells form the lymphatic endothelium of multiple organs and tissues, with a more restricted contribution to blood vessel endothelium. By deleting Prox1 specifically in PXM-derived cells, we show that this lineage is indispensable for lymphatic vessel development. Collectively, our data establish lineage history as a critical determinant of EC specialization, a finding with broad implications for our understanding of vascular development and heterogeneity.


Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord.

  • Jamie Garcia‎ et al.
  • Current biology : CB‎
  • 2017‎

The notochord, a conserved axial structure required for embryonic axis elongation and spine development, consists of giant vacuolated cells surrounded by an epithelial sheath [1-3]. During morphogenesis, vacuolated cells maintain their structural integrity despite being under constant mechanical stress [4]. We hypothesized that the high density of caveolae present in vacuolated cells [5, 6] could buffer mechanical tension. Caveolae are 50- to 80-nm membrane invaginations lined by cage-like polygonal structures [7, 8] formed by caveolin 1 (Cav1) or Cav3 and one of the cavin proteins [6, 9-11]. Recent in vitro work has shown that plasma membrane caveolae constitute a membrane reservoir that can buffer mechanical stresses such as stretching or osmotic swelling [12]. Moreover, mechanical integrity of vascular and muscle cells is partly dependent on caveolae [13-15]. However, the in vivo mechano-protective roles of caveolae have only begun to be explored. Using zebrafish mutants for cav1, cav3, and cavin1b, we show that caveolae are essential for notochord integrity. Upon loss of caveola function, vacuolated cells collapse at discrete positions under the mechanical strain of locomotion. Then, sheath cells invade the inner notochord and differentiate into vacuolated cells, thereby restoring notochord function and allowing normal spine development. Our data further indicate that nucleotides released by dying vacuolated cells promote sheath cell vacuolization and trans-differentiation. This work reveals a novel structural role for caveolae in vertebrates and provides unique insights into the mechanisms that safeguard notochord and spine development.


Apelin signaling dependent endocardial protrusions promote cardiac trabeculation in zebrafish.

  • Jialing Qi‎ et al.
  • eLife‎
  • 2022‎

During cardiac development, endocardial cells (EdCs) produce growth factors to promote myocardial morphogenesis and growth. In particular, EdCs produce neuregulin which is required for ventricular cardiomyocytes (CMs) to seed the multicellular ridges known as trabeculae. Defects in neuregulin signaling, or in endocardial sprouting toward CMs, cause hypotrabeculation. However, the mechanisms underlying endocardial sprouting remain largely unknown. Here, we first show by live imaging in zebrafish embryos that EdCs interact with CMs via dynamic membrane protrusions. After touching CMs, these protrusions remain in close contact with their target despite the vigorous cardiac contractions. Loss of the CM-derived peptide Apelin, or of the Apelin receptor, which is expressed in EdCs, leads to reduced endocardial sprouting and hypotrabeculation. Mechanistically, neuregulin signaling requires endocardial protrusions to induce extracellular signal-regulated kinase (Erk) activity in CMs and trigger their delamination. Altogether, these data show that Apelin signaling-dependent endocardial protrusions modulate CM behavior during trabeculation.


Origin and function of activated fibroblast states during zebrafish heart regeneration.

  • Bo Hu‎ et al.
  • Nature genetics‎
  • 2022‎

The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart.


Endoderm-derived islet1-expressing cells differentiate into endothelial cells to function as the vascular HSPC niche in zebrafish.

  • Hiroyuki Nakajima‎ et al.
  • Developmental cell‎
  • 2023‎

Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.


Svep1 stabilises developmental vascular anastomosis in reduced flow conditions.

  • Baptiste Coxam‎ et al.
  • Development (Cambridge, England)‎
  • 2022‎

Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway.


Innervation modulates the functional connectivity between pancreatic endocrine cells.

  • Yu Hsuan Carol Yang‎ et al.
  • eLife‎
  • 2022‎

The importance of pancreatic endocrine cell activity modulation by autonomic innervation has been debated. To investigate this question, we established an in vivo imaging model that also allows chronic and acute neuromodulation with genetic and optogenetic tools. Using the GCaMP6s biosensor together with endocrine cell fluorescent reporters, we imaged calcium dynamics simultaneously in multiple pancreatic islet cell types in live animals in control states and upon changes in innervation. We find that by 4 days post fertilization in zebrafish, a stage when islet architecture is reminiscent of that in adult rodents, prominent activity coupling between beta cells is present in basal glucose conditions. Furthermore, we show that both chronic and acute loss of nerve activity result in diminished beta-beta and alpha-beta activity coupling. Pancreatic nerves are in contact with all islet cell types, but predominantly with beta and delta cells. Surprisingly, a subset of delta cells with detectable peri-islet neural activity coupling had significantly higher homotypic coupling with other delta cells suggesting that some delta cells receive innervation that coordinates their output. Overall, these data show that innervation plays a vital role in the maintenance of homotypic and heterotypic cellular connectivity in pancreatic islets, a process critical for islet function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: