Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

High throughput circRNA sequencing analysis reveals novel insights into the mechanism of nitidine chloride against hepatocellular carcinoma.

  • Dan-Dan Xiong‎ et al.
  • Cell death & disease‎
  • 2019‎

Nitidine chloride (NC) has been demonstrated to have an anticancer effect in hepatocellular carcinoma (HCC). However, the mechanism of action of NC against HCC remains largely unclear. In this study, three pairs of NC-treated and NC-untreated HCC xenograft tumour tissues were collected for circRNA sequencing analysis. In total, 297 circRNAs were differently expressed between the two groups, with 188 upregulated and 109 downregulated, among which hsa_circ_0088364 and hsa_circ_0090049 were validated by real-time quantitative polymerase chain reaction. The in vitro experiments showed that the two circRNAs inhibited the malignant biological behaviour of HCC, suggesting that they may play important roles in the development of HCC. To elucidate whether the two circRNAs function as "miRNA sponges" in HCC, we identified circRNA-miRNA and miRNA-mRNA interactions by using the CircInteractome and miRwalk, respectively. Subsequently, 857 miRNA-associated differently expressed genes in HCC were selected for weighted gene co-expression network analysis. Module Eigengene turquoise with 423 genes was found to be significantly related to the survival time, pathology grade and TNM stage of HCC patients. Gene functional enrichment analysis showed that the 423 genes mainly functioned in DNA replication- and cell cycle-related biological processes and signalling cascades. Eighteen hubgenes (SMARCD1, CBX1, HCFC1, RBM12B, RCC2, NUP205, ECT2, PRIM2, RBM28, COPS7B, PRRC2A, GPR107, ANKRD52, TUBA1B, ATXN7L3, FUS, MCM8 and RACGAP1) associated with clinical outcomes of HCC patients were then identified. These findings showed that the crosstalk between hsa_circ_0088364 and hsa_circ_0090049 and their competing mRNAs may play important roles in HCC, providing interesting clues into the potential of circRNAs as therapeutic targets of NC in HCC.


MiR-193a-3p inhibits pancreatic ductal adenocarcinoma cell proliferation by targeting CCND1.

  • Zhi-Min Chen‎ et al.
  • Cancer management and research‎
  • 2019‎

Background: MicroRNAs (miRNAs) could modulate gene expression at the posttranscriptional level by promoting mRNA degradation or blocking mRNA translation, thus affecting the occurrence and development of cancer. Methods: In this work, qRT-PCR was conducted to detect the expression of miR-193a-3p and CCND1. The ability of cell proliferation was evaluated via CCK-8 assay. Cell apoptosis and cell cycle distribution were detected by flow cytometry. Bioinformatic techniques were employed to research the regulatory relationship between miR-193a-3p and target genes. The relationship between miR-193a-3p and CCND1 was verified via dual-luciferase reporter assays. Results: MiR-193a-3p expression in pancreatic ductal adenocarcinoma (PDAC) tissue was significantly lower than in non-cancerous tissue. After overexpressing miR-193a-3p in PDAC cells, their multiplication ability was significantly inhibited, apoptosis was accelerated, and the cell cycle was blocked in the G1 and G2/M phases. CCND1 was confirmed to have a targeted relationship with miR-193a-3p. Moreover, CCND1 expression was significantly lower in PDAC cells with an overexpression of miR-193a-3p. Conclusions: MiR-193a-3p targeted CCND1 to suppress tumor growth in PDAC cells. MiR-193a-3p may function as a tumor inhibitor in PDAC development, which could offer a promising therapeutic and prognostic strategy for PDAC treatment.


Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: a comprehensive meta-analysis and bioinformatics analysis.

  • Mei-Wei Li‎ et al.
  • Cancer cell international‎
  • 2019‎

Studies have shown that miR-146a-5p was differentially expressed in diverse cancers, but the associations between miR-146a-5p expression and prognosis across multiple types of cancer as well its potential targets and downstream pathways have not been comprehensively analyzed. In this study, we performed the first meta-analysis of the prognostic value of miR-146a-5p expression in diverse malignancies and explored prospective targets of miR-146a-5p and related signaling pathways.


Clinical Significance and Effect of lncRNA HOXA11-AS in NSCLC: A Study Based on Bioinformatics, In Vitro and in Vivo Verification.

  • Yu Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

HOXA11 antisense RNA (HOXA11-AS) has been shown to be involved in tumorigenesis and development of different cancers. However, the role of HOXA11-AS in non-small cell lung cancer (NSCLC) remains unclear. In this study, we firstly explored and confirmed the expression of HOXA11-AS in NSCLC tissues and cells. Cytometry, CCK-8, cell scratch, migration, Matrigel invasion and flow cytometry assays were performed to determine the biological impact of HOXA11-AS in vitro. Furthermore, a chick embryo chorioallantoic membrane (CAM) model of NSCLC was constructed to explore the effect of HOXA11-AS on tumorigenicity and angiogenesis in vivo. Additionally, bioinformatics analyses were performed to investigate the prospective pathways of HOXA11-AS co-expressed genes. As results, HOXA11-AS was markedly highly expressed in NSCLC tissues and cells. Furthermore, the proliferation, migration, invasion, tumorigenic and angiogenic ability of NSCLC cells were all inhibited and apoptosis was induced after HOXA11-AS knock-down. HOXA11-AS RNAi also led to cell cycle arrest on G0/G1 or G2/M phase. In addition, the non-small cell lung cancer pathway might be involved in regulating the co-expressed genes of HOXA11-AS in NSCLC. These results indicate that HOXA11-AS plays pivotal roles in NSCLC and it can become a novel therapeutic direction for treating NSCLC.


Upregulation of HOXA1 promotes tumorigenesis and development of non‑small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis.

  • Yu Zhang‎ et al.
  • International journal of oncology‎
  • 2018‎

Homeobox A1 (HOXA1) serves an oncogenic role in multiple cancer types. However, the role of HOXA1 in non‑small cell lung cancer (NSCLC) remains unclear. In the present study, use of reverse transcription-quantitative polymerase chain reaction and the databases of The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis and the Multi Experiment Matrix were combined to assess the expression of HOXA1 and its co-expressed genes in NSCLC. Bioinformatic analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network and protein-protein interaction analyses, were used to investigate the underlying molecular mechanism effected by the co-expressed genes. Additionally, the potential miRNAs targeting HOXA1 were investigated. The results showed that HOXA1 was upregulated in NSCLC. The area under the curve of HOXA1 indicated a moderate diagnostic value of the HOXA1 level in NSCLC. According to GO and KEGG analyses, the co-expressed genes may be involved in 'dGTP metabolic processes', 'network-forming collagen trimers', 'centromeric DNA binding' and 'the p53 signaling pathway'. Three miRNAs (miR‑181b‑5p, miR‑28‑5p and miR‑181d‑5p) targeting HOXA1 were each predicted by 10 algorithms; miR‑181b and miR‑181d levels were downregulated in LUSC tissues compared with those in normal lung tissues based on data from the TCGA database, and inverse correlations were found between HOXA1 and miR‑181b (r=-0.205, P<0.001) and miR‑181d (r=-0.106, P=0.020). We speculate that HOXA1 may be the direct target of miR‑181b‑5p or miR‑181d‑5p in LUSC, and HOXA1 may serve a significant role in NSCLC by regulating various pathways, particularly the p53 signaling pathway. However, the detailed mechanism should be verified by functional experiments.


A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma.

  • Dan-Dan Xiong‎ et al.
  • Journal of translational medicine‎
  • 2018‎

Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC).


Comprehensive investigation of a novel differentially expressed lncRNA expression profile signature to assess the survival of patients with colorectal adenocarcinoma.

  • Jiang-Hui Zeng‎ et al.
  • Oncotarget‎
  • 2017‎

Growing evidence has shown that long non-coding RNAs (lncRNAs) can serve as prospective markers for survival in patients with colorectal adenocarcinoma. However, most studies have explored a limited number of lncRNAs in a small number of cases. The objective of this study is to identify a panel of lncRNA signature that could evaluate the prognosis in colorectal adenocarcinoma based on the data from The Cancer Genome Atlas (TCGA). Altogether, 371 colon adenocarcinoma (COAD) patients with complete clinical data were included in our study as the test cohort. A total of 578 differentially expressed lncRNAs (DELs) were observed, among which 20 lncRNAs closely related to overall survival (OS) in COAD patients were identified using a Cox proportional regression model. A risk score formula was developed to assess the prognostic value of the lncRNA signature in COAD with four lncRNAs (LINC01555, RP11-610P16.1, RP11-108K3.1 and LINC01207), which were identified to possess the most remarkable correlation with OS in COAD patients. COAD patients with a high-risk score had poorer OS than those with a low-risk score. The multivariate Cox regression analyses confirmed that the four-lncRNA signature could function as an independent prognostic indicator for COAD patients, which was largely mirrored in the validating cohort with rectal adenocarcinoma (READ) containing 158 cases. In addition, the correlative genes of LINC01555 and LINC01207 were enriched in the cAMP signaling and mucin type O-Glycan biosynthesis pathways. With further validation in the future, our study indicates that the four-lncRNA signature could serve as an independent biomarker for survival of colorectal adenocarcinoma.


Effects of an Indolocarbazole-Derived CDK4 Inhibitor on Breast Cancer Cells.

  • Yuan Sun‎ et al.
  • Journal of Cancer‎
  • 2011‎

Cyclin D1 (D1) binds to cyclin-dependent kinases (CDK) 4 or 6 to form a holoenzyme that phosphorylates the Rb protein to promote cell cycle progression from G1 to S phase. Therefore, targeting CDK4/6 may be a good strategy for chemotherapy of cancer. We performed a proof-of-principle study to determine the effect of Naphtho [2, 1-α] pyrrolo [3, 4-c] carbazole-5, 7 (6H, 12H)-dione (NPCD), a novel CDK4 inhibitor, on breast cancer cell lines.


Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells.

  • Yu Zhang‎ et al.
  • Cancer cell international‎
  • 2016‎

Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown.


The clinical value of lncRNA NEAT1 in digestive system malignancies: A comprehensive investigation based on 57 microarray and RNA-seq datasets.

  • Dan-Dan Xiong‎ et al.
  • Oncotarget‎
  • 2017‎

This comprehensive investigation was performed to evaluate the expression level and potential clinical value of NEAT1 in digestive system malignancies. A total of 57 lncRNA datasets of microarray or RNA-seq and 5 publications were included. The pooled standard mean deviation (SMD) indicated that NEAT1 was down-regulated in esophageal carcinoma (ESCA, SMD = -0.35, 95% CI: -0.5~-0.20, P < 0.0001) and hepatocellular carcinoma (HCC, SMD = -0.47, 95% CI: -0.60~-0.34, P < 0.0001), while in pancreatic cancer (PC), NEAT1 was up-regulated (SMD = 0.45, 95% CI: 0.2~0.71, P = 0.001). However, NEAT1 expression in gastric cancer (GC), colorectal cancer (CRC), biliary tract cancer (BTC) and gallbladder carcinoma (GBC) showed no significant difference between cancer and control groups. The pooled area under the curve values for ESCA, GC, CRC, PC and HCC were 0.60, 0.89, 0.81, 0.77 and 0.69, respectively. Furthermore, our result demonstrated that a high expression of NEAT1 predicted an unfavorable prognosis in patients with digestive system malignancies (HR: 1.50, 95% CI: 1.28-1.76, P < 0.0001). Our study suggests that NEAT1 may play different roles in the initiation and progression of digestive system cancers and could be a potential diagnostic and prognostic biomarker in patients with digestive system carcinomas. Further and stricter studies with a larger number of cases are necessary to strengthen our conclusions.


Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases.

  • Jiang-Hui Zeng‎ et al.
  • Oncotarget‎
  • 2017‎

Esophageal carcinoma (ESCA) is one of the most common malignancies worldwide, and its pathogenesis is complex. In this study, we identified differentially expressed miRNAs (DEMs) and genes (DEGs) of ESCA from The Cancer Genome Atlas (TCGA) database. The diagnostic values of DEMs were determined by receiver operating characteristic (ROC) analyses and validated based on data from Gene Expression Omnibus (GEO). The top five DEMs with the best diagnostic values were selected, and their potential targets were predicted by various in silico methods. These target genes were then identified among the DEGs from TCGA. Furthermore, the overlapping genes were subjected to protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The miRNA-transcription factor (TF) regulatory relations were determined using CircuitsDB and TransmiR. Finally, the regulatory networks of miRNA-TF and miRNA-gene were constructed and analyzed. A total of 136 DEMs and 3541 DEGs were identified in ESCA. The top five DEMs with the highest area under the receiver operating characteristic curve (AUC) values were miRNA-93 (0.953), miRNA-21 (0.928), miRNA-4746 (0.915), miRNA-196a-1 (0.906) and miRNA-196a-2 (0.906). The combined AUC of these five DEMs was 0.985. The KEGG analysis with 349 overlapping genes showed that the calcium signaling pathway and the neuroactive ligand-receptor interaction were the most relevant pathways. The regulatory networks of miRNA-TF and miRNA-gene, including 38 miRNA-TF and 560 miRNA-gene pairs, were successfully established. Our findings may provide new insights into the molecular mechanisms of ESCA pathogenesis. Future research will aim to explore the role of novel miRNAs in the pathogenesis and improve the early diagnosis of ESCA.


Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma.

  • Fang-Hui Ren‎ et al.
  • BMC cancer‎
  • 2018‎

Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC.


Prognostic microRNAs and their potential molecular mechanism in pancreatic cancer: A study based on The Cancer Genome Atlas and bioinformatics investigation.

  • Liang Liang‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Although certain biomarkers that are directly associated with the overall survival (OS) of patients with pancreatic adenocarcinoma (PAAD) have been identified, the efficacy of a single factor is limited to predicting the prognosis. The aim of the present study was to identify a combination micro (mi)RNA signature that enhanced the prognostic prediction for PAAD. Following analysis of the data available from The Cancer Genome Atlas (TCGA), 175 PAAD samples were selected for the present study, and the associations between 494 miRNAs and OS were investigated. The prognostic value of all miRNAs was analyzed by multivariate Cox regression, and the miRNAs were ranked according to the hazard ratio (HR) and P‑values. The top 5 miRNAs (miR‑1301, miR‑125a, miR‑376c, miR‑328 and miR‑376b) were significantly associated with OS (HR=0.139; 95% confidence interval, 0.043‑0.443; P<0.001), thus demonstrating that this panel was able to serve as an independent prognostic factor for PAAD. In addition, the present study also predicted the target genes of the top 10 miRNAs with the highest prognostic values using 12 different prediction software, and enrichment signaling pathway analyses elucidated that several pathways may be markedly associated with these miRNAs, including 'Pathways in cancer', 'Chronic myeloid leukemia', 'Glioma' and 'MicroRNAs in cancer'. Lastly, ubiquitin C, epidermal growth factor receptor, estrogen receptor 1, mitogen‑activated protein kinase 1, mothers against decapentaplegic homolog 4 and androgen receptor may be the hub genes revealed by STRING analysis. The present study identified several miRNAs, particularly a five‑miRNA‑pool, that may be reliable, independent factors for predicting survival in patients with PAAD. However, the underlying molecular mechanisms require further investigation in the future.


A comprehensive insight into the clinicopathologic significance of miR-144-3p in hepatocellular carcinoma.

  • Hai-Wei Liang‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Studies which focused on the character of miR-144-3p in hepatocellular carcinoma (HCC) are limited. This study aimed to explore the expression, clinical significance and the potential targets of miR-144-3p in HCC.


Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs.

  • Dan-Ming Wei‎ et al.
  • International journal of oncology‎
  • 2019‎

Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.


The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model.

  • Rong-Quan He‎ et al.
  • BMC cancer‎
  • 2017‎

Non-small cell lung cancer (NSCLC) has led to the highest cancer-related mortality for decades. To enhance the efficiency of early diagnosis and therapy, more efforts are urgently needed to reveal the origins of NSCLC. In this study, we explored the effect of miR-542-5p in NSCLC with clinical samples and in vivo models and further explored the prospective function of miR-542-5p though bioinformatics methods.


A comprehensive analysis of the predicted targets of miR-642b-3p associated with the long non-coding RNA HOXA11-AS in NSCLC cells.

  • Yu Zhang‎ et al.
  • Oncology letters‎
  • 2018‎

Long non-coding RNA HOXA11 antisense RNA (HOXA11-AS) has been previously reported to be involved in the tumorigenesis and progression of ovarian cancer and glioma. However, the function of HOXA11-AS in lung cancer remains unclear. Following the knockdown of HOXA11-AS in A549 cells, a microarray analysis was performed in order to detect the differences in microRNA (miRNA/miR) profiles. Subsequently, miR-642b-3p was selected for further analysis. Four miRNA target prediction algorithms were used to identify potential target genes of miR-642b-3p. Bioinformatics analyses, including Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes, protein-protein interactions (PPIs) and network analysis, were performed to investigate the potential functions, pathways and networks of the target genes. Furthermore, the differential expression of miR-642b-3p and its target genes between normal lung and non-small cell lung cancer (NSCLC) tissues was verified using The Cancer Genome Atlas (TCGA) database. Six target genes [zinc finger protein 350, heterogeneous nuclear ribonucleoprotein U, high mobility group box 1, phosphodiesterase 4D (PDE4D), synaptotagmin binding cytoplasmic RNA interacting protein and basic helix-loop-helix family member B9] of miR-642b-3p were predicted using all 4 algorithms. It was revealed that miR-642b-3p was overexpressed in adenocarcinoma and squamous cell carcinoma tissues compared with non-cancerous lung tissues based on the TCGA database. From the 6 target genes, PDE4D was downregulated in lung adenocarcinoma and squamous cell carcinoma tissues, and a weak negative correlation between HOXA11-AS and PDE4D was identified. The area under the curve of PDE4D was 0.905 [95% confidence interval (CI), 0.879-0.931] for patients with lung adenocarcinoma and 0.665 (95% CI, 0.606-0.725) for patients with squamous cell carcinoma. Additionally, GO analysis of the target genes revealed that miR-642b-3p was specifically involved in complex cellular pathways. The target gene RAN binding protein 2 possessed the highest degree of interactions in the PPI network (degree=40). It was hypothesized that HOXA11-AS may have a function in NSCLC by regulating the expression of miR-642b-3p and PDE4D, which laid the foundation for the further elucidation of the potential molecular mechanisms of NSCLC.


In silico analysis identified miRNA‑based therapeutic agents against glioblastoma multiforme.

  • Dan-Dan Xiong‎ et al.
  • Oncology reports‎
  • 2019‎

MicroRNAs (miRNAs or miRs) contribute to the development of various malignant neoplasms, including glioblastoma multiforme (GBM). The present study aimed to explore the pathogenesis of GBM and to identify latent therapeutic agents for patients with GBM, based on an in silico analysis. Gene chips that provide miRNA expression profiling in GBM were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) were also determined via the RobustRankAggreg algorithm. The target genes of DEMs were predicted and then intersected with GBM‑associated genes that were collected from the Gene Expression Profiling Interactive Analysis. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the overlapping genes were then performed. Simultaneously, a connectivity map (CMap) analysis was performed to screen for potential therapeutic agents for GBM. A total of 10 DEMs (hsa‑miR‑196a, hsa‑miR‑10b, hsa‑miR‑196b, hsa‑miR‑18b, hsa‑miR‑542‑3p, hsa‑miR‑129‑3p, hsa‑miR‑1224‑5p, hsa‑miR‑876‑3p and hsa‑miR‑770‑5p) were obtained from three GEO gene chips (GSE25631, GSE42657 and GSE61710). Then, 1,720 target genes of the 10 miRNAs and 4,185 differently expressed genes in GBM were collected. By intersecting the aforementioned gene clusters, the present study identified 390 overlapping genes. GO and KEGG analyses of the 390 genes demonstrated that these genes were involved in certain cancer‑associated biological functions and pathways. Eight genes [(GTPase NRas (NRAS), calcium/calmodulin‑dependent protein kinase type II subunit Gamma (CAMK2G), platelet‑derived growth factor receptor alpha (PDGFRA), calmodulin 3 (CALM3), cyclin‑dependent kinase 6 (CDK6), calcium/calmodulin‑dependent protein kinase type II subunit beta (CAMK2B), retinoblastoma‑associated protein (RB1) and protein kinase C beta type (PRKCB)] that were centralized in the glioma pathway were selected for CMap analysis. Three chemicals (W‑13, gefitinib and exemestane) were identified as putative therapeutic agents for GBM. In summary, the present study identified three miRNA‑based chemicals for use as a therapy for GBM. However, more experimental data are needed to verify the therapeutic properties of these latent drugs in GBM.


Clinical significance and prospective molecular mechanism of MALAT1 in pancreatic cancer exploration: a comprehensive study based on the GeneChip, GEO, Oncomine, and TCGA databases.

  • Zu-Cheng Xie‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Long noncoding RNAs (lncRNAs) are known to function as regulators in the development and occurrence of various tumors. MALAT1 is a highly conserved lncRNA and has vital functions in diverse tumors, including pancreatic cancer (PC). However, the underlying molecular regulatory mechanism involved in the occurrence and development of PC remains largely unknown. Thus, it is important to explore MALAT1 in PC and elucidate its function, which might offer a new perspective for clinical diagnosis and therapy.


Identification of a RNA-Seq based prognostic signature with five lncRNAs for lung squamous cell carcinoma.

  • Rui-Xue Tang‎ et al.
  • Oncotarget‎
  • 2017‎

Long non-coding RNAs (lncRNAs) expression profile signature for survival assessment in lung squamous cell carcinoma (LUSC) are largely inconsistent due to distinct detecting approaches and small sample size. Systematic and integrative investigation of RNA-Seq based data from The Cancer Genome Atlas (TCGA) herein was performed to determine candidate lncRNAs for prognosis evaluation of LUSC. A total of 60483 genes, including 7589 lncRNAs were assessed in a cohort including 478 LUSC cases with follow-up data. Firstly, 4225 differentially expressed lncRNAs were obtained via R packages. Next, univariate and multivariate Cox proportional hazards regression revealed that 41 lncRNAs were closely related to the survival of LUSC. Finally, lncRNA based prognosis index (PI) could predict overall survival of LUSC with high accuracy (AUC = 0.652, CI: 0.598, 0.705), PI = expCYP4F26P*βCYP4F26P+expRP11-108M12.3*βRP11-108M12.3+expRP11-38M8.1*βRP11-38M8.1+expRP11-54H7.4*βRP11-54H7.4+expZNF503-AS1*βZNF503-AS1. Furthermore, it was confirmed that the five-lncRNA signature could act as an independent prognostic indicator for LUSC (HR = 2.068, p < 0.001 with univariate analysis, HR = 1.928, p = 0.038 with multivariate). Besides, we constructed a weighted gene co-expression network analysis (WGCNA) of key lncRNA RP11-54H7.4 according to the p-value of related genes' weight. This study provides a RNA-Seq based prognostic signature with five lncRNAs for further clinical application to LUSC patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: