Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 667 papers

Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability.

  • Hongyan Wang‎ et al.
  • BMC plant biology‎
  • 2009‎

Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It remains unclear however whether pollination by alien pollens of an incompatible species may impose a "biological stress" even in the absence of genome-merger or genetic introgression, whereby genetic and/or epigenetic instability of the maternal recipient genome might be provoked.


Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population.

  • Ying Wu‎ et al.
  • Diabetes‎
  • 2008‎

Genome-wide association studies have identified common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX/IDE, EXT2, and LOC387761 loci that significantly increase the risk of type 2 diabetes. We aimed to replicate these observations in a population-based cohort of Chinese Hans and examine the associations of these variants with type 2 diabetes and diabetes-related phenotypes.


Cellular processes of v-Src transformation revealed by gene profiling of primary cells--implications for human cancer.

  • Bart M Maślikowski‎ et al.
  • BMC cancer‎
  • 2010‎

Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets.


Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.

  • Ying Wu‎ et al.
  • PLoS biology‎
  • 2008‎

Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular communication in the circadian network is signaling between a subset of clock neurons that secrete the neuropeptide pigment dispersing factor (PDF) and clock neurons that possess its G protein-coupled receptor (PDFR). Furthermore, the specific hypothesis has been proposed that PDF-secreting clock neurons entrain the phase of organismal rhythms, and the cellular oscillations of other clock neurons, via the temporal patterning of secreted PDF signals. In order to test this hypothesis, we have devised a novel technique for altering the phase relationship between circadian transcriptional feedback oscillation and PDF secretion by using an ion channel-directed spider toxin to modify voltage-gated Na(+) channel inactivation in vivo. This technique relies on the previously reported "tethered-toxin" technology for cell-autonomous modulation of ionic conductances via heterologous expression of subtype-specific peptide ion channel toxins as chimeric fusion proteins tethered to the plasma membrane with a glycosylphosphatidylinositol (GPI) anchor. We demonstrate for the first time, to our knowledge, the utility of the tethered-toxin technology in a transgenic animal, validating four different tethered spider toxin ion channel modifiers for use in Drosophila. Focusing on one of these toxins, we show that GPI-tethered Australian funnel-web spider toxin delta-ACTX-Hv1a inhibits Drosophila para voltage-gated Na(+) channel inactivation when coexpressed in Xenopus oocytes. Transgenic expression of membrane-tethered delta-ACTX-Hv1a in vivo in the PDF-secreting subset of clock neurons induces rhythmic action potential bursts and depolarized plateau potentials. These in vitro and in vivo electrophysiological effects of membrane-tethered delta-ACTX-Hv1a are consistent with the effects of soluble delta-ACTX-Hv1a purified from venom on Na(+) channel physiological and biophysical properties in cockroach neurons. Membrane-tethered delta-ACTX-Hv1a expression in the PDF-secreting subset of clock neurons induces an approximately 4-h phase advance of the rhythm of PDF accumulation in their terminals relative to both the phase of the day:night cycle and the phase of the circadian transcriptional feedback loops. As a consequence, the morning anticipatory peak of locomotor activity preceding dawn, which has been shown to be driven by the clocks of the PDF-secreting subset of clock neurons, phase advances coordinately with the phase of the PDF rhythm of the PDF-secreting clock neurons, rather than maintaining its phase relationship with the day:night cycle and circadian transcriptional feedback loops. These results (1) validate the tethered-toxin technology for cell-autonomous modulation of ion channel biophysical properties in vivo in transgenic Drosophila, (2) demonstrate that the kinetics of para Na(+) channel inactivation is a key parameter for determining the phase relationship between circadian transcriptional feedback oscillation and PDF secretion, and (3) provide experimental support for the hypothesis that PDF-secreting clock neurons entrain the phase of organismal rhythms via the temporal patterning of secreted PDF signals.


CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer.

  • Zhe-Wei Wei‎ et al.
  • Cancer letters‎
  • 2015‎

The chemokine (C-X-C motif) ligand 1 (CXCL1) regulates tumor-stromal interactions and tumor invasion. However, the precise role of CXCL1 on gastric tumor growth and patient survival remains unclear. In the current study, protein expressions of CXCL1, vascular endothelial growth factor (VEGF) and phospho-signal transducer and activator of transcription 3 (p-STAT3) in primary tumor tissues from 98 gastric cancer patients were measured by immunohistochemistry (IHC). CXCL1 overexpressed cell lines were constructed using Lipofectamine 2000 reagent or lentiviral vectors. Effects of CXCL1 on VEGF expression and local tumor growth were evaluated in vitro and in vivo. CXCL1 was positively expressed in 41.4% of patients and correlated with VEGF and p-STAT3 expression. Higher CXCL1 expression was associated with advanced tumor stage and poorer prognosis. In vitro studies in AGS and SGC-7901 cells revealed that CXCL1 increased cell migration but had little effect on cell proliferation. CXCL1 activated VEGF signaling in gastric cancer (GC) cells, which was inhibited by STAT3 or chemokine (C-X-C motif) receptor 2 (CXCR2) blockade. CXCL1 also increased p-STAT3 expression in GC cells. In vivo, CXCL1 increased xenograft local tumor growth, phospho-Janus kinase 2 (p-JAK2), p-STAT3 levels, VEGF expression and microvessel density. These results suggested that CXCL1 increased local tumor growth through activation of VEGF signaling which may have mechanistic implications for the observed inferior GC survival. The CXCL1/CXCR2 pathway might be potent to improve anti-angiogenic therapy for gastric cancer.


Gastrointestinal delivery of propofol from fospropofol: its bioavailability and activity in rodents and human volunteers.

  • Krystyna M Wozniak‎ et al.
  • Journal of translational medicine‎
  • 2015‎

Propofol is a safe and widely used intravenous anesthetic agent, for which additional clinical uses including treatment of migraine, nausea, pain and anxiety have been proposed (Vasileiou et al. Eur J Pharmacol 605:1-8, 2009). However, propofol suffers from several disadvantages as a therapeutic outside anesthesia including its limited aqueous solubility and negligible oral bioavailability. The purpose of the studies described here was to evaluate, in both animals and human volunteers, whether fospropofol (a water soluble phosphate ester prodrug of propofol) would provide higher propofol bioavailability through non-intravenous routes.


Mechanism of allosteric activation of SAMHD1 by dGTP.

  • Xiaoyun Ji‎ et al.
  • Nature structural & molecular biology‎
  • 2013‎

SAMHD1, a dNTP triphosphohydrolase (dNTPase), has a key role in human innate immunity. It inhibits infection of blood cells by retroviruses, including HIV, and prevents the development of the autoinflammatory Aicardi-Goutières syndrome (AGS). The inactive apo-SAMHD1 interconverts between monomers and dimers, and in the presence of dGTP the protein assembles into catalytically active tetramers. Here, we present the crystal structure of the human tetrameric SAMHD1-dGTP complex. The structure reveals an elegant allosteric mechanism of activation through dGTP-induced tetramerization of two inactive dimers. Binding of dGTP to four allosteric sites promotes tetramerization and induces a conformational change in the substrate-binding pocket to yield the catalytically active enzyme. Structure-based biochemical and cell-based biological assays confirmed the proposed mechanism. The SAMHD1 tetramer structure provides the basis for a mechanistic understanding of its function in HIV restriction and the pathogenesis of AGS.


The loss of taste genes in cetaceans.

  • Kangli Zhu‎ et al.
  • BMC evolutionary biology‎
  • 2014‎

Five basic taste modalities, sour, sweet, bitter, salt and umami, can be distinguished by humans and are fundamental for physical and ecological adaptations in mammals. Molecular genetic studies of the receptor genes for these tastes have been conducted in terrestrial mammals; however, little is known about the evolution and adaptation of these genes in marine mammals.


Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats.

  • Xiao-Hong Cai‎ et al.
  • Experimental neurology‎
  • 2014‎

Obstructive sleep apnea hypopnea syndrome (OSAHS) in children is associated with multiple system morbidities. Cognitive dysfunction as a result of central nervous system complication has been reported in children with OSAHS. However, the underlying mechanisms are poorly understood. Endoplasmic reticulum stress (ERS)-related apoptosis plays an important role in various diseases of the central nervous system, but very little is known about the role of ERS in mediating pathophysiological reactions to cognitive dysfunction in OSAHS. Chronic intermittent hypoxia (CIH) exposures, modeling OSAHS, across 2 and 4weeks in growing rats made more reference memory errors, working memory errors and total memory errors in the 8-Arm radial maze task, increased significantly TUNEL positive cells, upregulated the unfolded protein response in the hippocampus and prefrontal cortex as evidenced by increased phosphorylation of PKR-like endoplasmic reticulum kinase, inositol-requiring enzyme l and some downstream products. A selective inhibitor of eukaryotic initiation factor-2a dephosphorylation, salubrinal, prevented C/EBP-homologous protein activation in the hippocampus and prefrontal cortex throughout hypoxia/reoxygenation exposure. Our findings suggest that ERS mediated cell apoptosis may be one of the underlying mechanisms of cognitive dysfunction in OSAHS children. Further, a specific ERS inhibitor Salubrinal should be tested for neuroprotection against CIH-induced injury.


Metabolic phenotyping for monitoring ovarian cancer patients.

  • Chaofu Ke‎ et al.
  • Scientific reports‎
  • 2016‎

Epithelial ovarian cancer (EOC) is the most deadly of the gynecological cancers. New approaches and better tools for monitoring treatment efficacy and disease progression of EOC are required. In this study, metabolomics using rapid resolution liquid chromatography mass spectrometry was applied to a systematic investigation of metabolic changes in response to advanced EOC, surgery and recurrence. The results revealed considerable metabolic differences between groups. Moreover, 37, 30, and 26 metabolites were identified as potential biomarkers for primary, surgical and recurrent EOC, respectively. Primary EOC was characterized by abnormal lipid metabolism and energy disorders. Oxidative stress and surgical efficacy were clear in the post-operative EOC patients. Recurrent EOC patients showed increased amino acid and lipid metabolism compared with primary EOC patients. After cytoreductive surgery, eight metabolites (e.g. l-kynurenine, retinol, hydroxyphenyllactic acid, 2-octenoic acid) corrected towards levels of the control group, and four (e.g. hydroxyphenyllactic acid, 2-octenoic acid) went back again to primary EOC levels after disease relapse. In conclusion, this study delineated metabolic changes in response to advanced EOC, surgery and recurrence, and identified biomarkers that could facilitate both understanding and monitoring of EOC development and progression.


LPAIV H9N2 Drives the Differential Expression of Goose Interferons and Proinflammatory Cytokines in Both In Vitro and In Vivo Studies.

  • Hao Zhou‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese.


Effects of Di-(2-ethylhexyl) Phthalate on Lipid Metabolism by the JAK/STAT Pathway in Rats.

  • Yiyang Jia‎ et al.
  • International journal of environmental research and public health‎
  • 2016‎

The most widely used plasticizer, di-(2-ethylhexyl) phthalate (DEHP), is known to affect lipid metabolism and adipogenesis. We studied the effects of dietary DEHP exposure on metabolism in rats as well as the role of the JAK/STAT pathway in this process. Eighty rats were exposed to DEHP (0, 5, 50 and 500 mg/kg/d) through dietary intake for 4 weeks. We then collected blood samples, liver, and adipose tissues to detect modifications in the levels of serum lipids, leptin, adiponectin and insulin. JAK3, STAT5a and PPARγ expression were detected at both the gene and protein levels. The activation of JAK3 and STAT5a was also detected. The DEHP-exposed rats had increased body weight, serum lipid, insulin, and leptin levels. Moreover, the JAK3/STAT5a pathway was activated in the adipose tissue; however, this pathway was not activated in the liver. The mRNA of SREBP-1c in the liver was increased significantly among each of the groups, in contrast to the levels found in the mature SREBP-1c protein form. Furthermore, the expression of FABP4, Acox and FASn was decreased in the liver, but increased in adipose tissue. Thus, we conclude that exposure to DEHP reduces the hydrolysis of lipid and promotes triglyceride accumulation by oppositely regulating the activation state of JAK/STAT pathway in the liver and adipose tissue, resulting in the disorder of body lipid metabolism and obesity.


SAV742, a Novel AraC-Family Regulator from Streptomyces avermitilis, Controls Avermectin Biosynthesis, Cell Growth and Development.

  • Di Sun‎ et al.
  • Scientific reports‎
  • 2016‎

Avermectins are useful anthelmintic antibiotics produced by Streptomyces avermitilis. We demonstrated that a novel AraC-family transcriptional regulator in this species, SAV742, is a global regulator that negatively controls avermectin biosynthesis and cell growth, but positively controls morphological differentiation. Deletion of its gene, sav_742, increased avermectin production and dry cell weight, but caused delayed formation of aerial hyphae and spores. SAV742 directly inhibited avermectin production by repressing transcription of ave structural genes, and also directly regulated its own gene (sav_742) and adjacent gene sig8 (sav_741). The precise SAV742-binding site on its own promoter region was determined by DNase I footprinting assay coupled with site-directed DNA mutagenesis, and 5-nt inverted repeats (GCCGA-n10/n12-TCGGC) were found to be essential for SAV742 binding. Similar 5-nt inverted repeats separated by 3, 10 or 15 nt were found in the promoter regions of target ave genes and sig8. The SAV742 regulon was predicted based on bioinformatic analysis. Twenty-six new SAV742 targets were identified and experimentally confirmed, including genes involved in primary metabolism, secondary metabolism and development. Our findings indicate that SAV742 plays crucial roles in not only avermectin biosynthesis but also coordination of complex physiological processes in S. avermitilis.


Effects of Di-(2-ethylhexyl) Phthalate on the Hypothalamus-Uterus in Pubertal Female Rats.

  • Te Liu‎ et al.
  • International journal of environmental research and public health‎
  • 2016‎

The pollution of endocrine disruptors and its impact on human reproductive system have attracted much attention. Di-(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is widely used in food packages, containers, medical supplies and children's toys. It can cause diseases such as infertility, sexual precocity and uterine bleeding and thus arouse concerns from the society and scholars. The effect of DEHP on pubertal female reproductive system is still not well-studied. This study was to investigate the effects of DEHP on the hypothalamus-uterus in pubertal female rats, reveal the reproductive toxicity of DEHP on pubertal female rats and its mechanism, and provide scientific evidence for the evaluation of toxicity and toxic mechanism of DEHP on reproductive system. Forty-eight pubertal female rats were randomly divided into four groups and respectively administered via oral gavage 0, 250, 500, or 1000 mg/kg/d DEHP in 0.1 mL corn oil/20 g body weight for up to four weeks. Compared with control rats, the DEHP-treated rats showed: (1) higher gonadotropin-releasing hormone (GnRH) level in the hypothalamus; (2) higher protein levels of GnRH in the hypothalamus; and (3) higher mRNA and protein levels of GnRH receptor (GnRHR) in the uterus. Our data reveal that DEHP exposure may lead to a disruption in pubertal female rats and an imbalance of hypothalamus-uterus. Meanwhile, DEHP may, through the GnRH in the hypothalamus and its receptor on the uterus, lead to diseases of the uterus. DEHP may impose a negative influence on the development and functioning of the reproductive system in pubertal female rats.


Viral-host interaction in kidney reveals strategies to escape host immunity and persistently shed virus to the urine.

  • Xumin Ou‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatitis A virus is one of five types of hepatotropic viruses that cause human liver disease. A similar liver disease is also identified in ducks caused by Duck Hepatitis A virus (DHAV). Notably, many types of hepatotropic viruses can be detected in urine. However, how those viruses enter into the urine is largely unexplored. To elucidate the potential mechanism, we used the avian hepatotropic virus to investigate replication strategies and immune responses in kidney until 280 days after infection. Immunohistochemistry and qPCR were used to detect viral distribution and copies in the kidney. Double staining of CD4+ or CD8+ T cells and virus and qPCR were used to investigate T cell immune responses and expression levels of cytokines. Histopathology was detected by standard HE staining. In this study, viruses were persistently located at scattered renal tubules. No CD4+ or CD8+ T cells were recruited to the kidney, which was only accompanied by transient cytokine storms. In conclusion, the extremely scattered infection was the viral strategy to escape host immunity and may persistently shed virus into urine. The deletion of Th or Tc cell responses and transient cytokine storms indeed provide an advantageous renal environment for their persistent survival.


PSMB9 codon 60 polymorphisms have no impact on the activity of the immunoproteasome catalytic subunit B1i expressed in multiple types of solid cancer.

  • Ji Eun Park‎ et al.
  • PloS one‎
  • 2013‎

The proteasome is a key regulator of cellular protein homeostasis and is a clinically validated anticancer target. The immunoproteasome, a subtype of proteasome expressed mainly in hematopoietic cells, was initially recognized for its role in antigen presentation during the immune response. Recently, the immunoproteasome has been implicated in several disease conditions including cancer and autoimmune disorders, but many of the factors contributing to these pathological processes remain unknown. In particular, the codon 60 polymorphism of the PSMB9 gene encoding the β1i immunoproteasome catalytic subunit has been investigated in the context of a variety of diseases. Despite this, previous studies have so far reported inconsistent findings regarding the impact of this polymorphism on proteasome activity. Thus, we set out to investigate the impact of the PSMB9 codon 60 polymorphism on the expression and activity of the β1i immunoproteasome subunit in a panel of human cancer cell lines. The β1i-selective fluorogenic substrate Acetyl-Pro-Ala-Leu-7-amino-4-methylcoumarin was used to specifically measure β1i catalytic activity. Our results indicate that the codon 60 Arg/His polymorphism does not significantly alter the expression and activity of β1i among the cell lines tested. Additionally, we also examined the expression of β1i in clinical samples from colon and pancreatic cancer patients. Our immunohistochemical analyses showed that ≈ 70% of clinical colon cancer samples and ≈ 53% of pancreatic cancer samples have detectable β1i expression. Taken together, our results indicate that the β1i subunit of the immunoproteasome is frequently expressed in colon and pancreatic cancers but that the codon 60 genetic variants of β1i display similar catalytic activities and are unlikely to contribute to the significant inter-cell-line and inter-individual variabilities in the immunoproteasome activity.


Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes.

  • Hanieh Yaghootkar‎ et al.
  • Diabetes‎
  • 2013‎

Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics-based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26-0.35) increase in fasting insulin, a 0.34-SD (0.30-0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47-2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI -0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (-0.20 SD; 95% CI -0.38 to -0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75-1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: -0.03 SD; 95% CI -0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95-1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.


Dendritic cells pulsed with Hsp70 and HBxAg induce specific antitumor immune responses in hepatitis B virus-associated hepatocellular carcinoma.

  • Hui Wang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Previous studies have drawn attention to dendritic cell (DC) vaccines; particularly the application of the tumor-associated antigen-targeted DC vaccine. The present study analyzed DCs derived from a normal individual and pulsed the cells with heat shock protein 70 peptide (Hsp70) and/or hepatitis B virus x antigen (HBxAg), a hepatocellular carcinoma (HCC)-associated antigen. It was then investigated whether this method of vaccination induced strong therapeutic antitumor immunity. The results revealed that the Hsp70/HBxAg complex-activated phenotype improves the functional maturation of DCs compared with using Hsp70 or HBxAg alone. Compared with either Hsp70 or HBxAg alone, matured DCs pulsed with the Hsp70/HBxAg complex stimulated a high level of autologous T-cell proliferation and induced HCC-specific cytotoxic T lymphocytes, which specifically killed HCC cells through a major histocompatibility complex class I mechanism. These results indicated that a vaccination therapy using DCs co-pulsed with the Hsp70/HBxAg complex is an effective strategy for immunotherapy and may offer a useful approach to protect against HCC.


Variants and haplotypes in Flap endonuclease 1 and risk of gallbladder cancer and gallstones: a population-based study in China.

  • Xingyuan Jiao‎ et al.
  • Scientific reports‎
  • 2015‎

The role of FEN1 genetic variants on gallstone and gallbladder cancer susceptibility is unknown. FEN1 SNPs were genotyped using the polymerase chain reaction-restriction fragment length polymorphism method in blood samples from 341 gallbladder cancer patients and 339 healthy controls. The distribution of FEN1-69G > A genotypes among controls (AA, 20.6%; GA, 47.2% and GG 32.2%) was significantly different from that among gallbladder cancer cases (AA, 11.1%; GA, 48.1% and GG, 40.8%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-69G > A GA (OR = 1.73, 95% CI = 1.01-2.63) and the FEN1-69G > A GG (OR = 2.29, 95% CI = 1.31-3.9). The distribution of FEN1 -4150T genotypes among controls (TT, 21.8%;GT, 49.3% and GG 28.9%) was significantly different from that among gallbladder cancer cases (TT, 12.9%; GT, 48.4% and GG 38.7%), significantly increased association with gallbladder cancer was observed for subjects with both the FEN1-4150T GT(OR = 1.93, 95% CI = 1.04-2.91) and the FEN1-4150T GG(OR = 2.56, 95% CI = 1.37-5.39). A significant trend towards increased association with gallbladder cancer was observed with potentially higher-risk FEN1-69G > A genotypes (P < 0.001, χ2 trend test) and FEN14150G > T (P < 0.001, χ2 trend test) in gallstone presence but not in gallstone absence (P = 0.81, P = 0.89, respectively). In conclusion, this study revealed firstly that FEN1 polymorphisms and haplotypes are associated with gallbladder cancer risk.


Large C9orf72 repeat expansions are seen in Chinese patients with sporadic amyotrophic lateral sclerosis.

  • Yongping Chen‎ et al.
  • Neurobiology of aging‎
  • 2016‎

An intronic GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene was considered as the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia in Caucasian populations. Using repeat-primed polymerase chain reaction analysis and Southern blotting methods, we assessed the frequency and size of hexanucleotide repeat expansion in a cohort of 918 sporadic ALS (SALS) patients and 632 control individuals of Han Chinese origin. We identified 8 (0.87%) of the SALS patients and none of control individuals as carriers of C9orf72 expansions with 700-3500 repeats. A comprehensive neuropsychological battery was conducted on 4 expansion-positive ALS patients, where 3 patients were found to have cognitive impairment. All expansion-positive patients were genotyped for the previously reported 20 single-nucleotide polymorphism (SNP) risk haplotypes on chromosome 9p21. Among them, 13 SNP risk haplotypes were shared in all expansion carriers, suggesting a common founder from European ancestry. Further meta-analysis demonstrated that the intermediate expansion size with 24-30 repeats, rare in both patients and controls, were significantly associated with the risk for ALS. To our knowledge, this is the first study to identify a proportion of Chinese SALS patients carrying this pathologic expansion of up to ∼3500 repeats and to completely elaborate the 20-SNP risk haplotypes in Chinese expansion-positive patients, providing indispensable evidence for the origin, geographical range, and population prevalence of the C9orf72-associated ALS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: