Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site.

  • Yibin Xu‎ et al.
  • Journal of molecular biology‎
  • 2010‎

The X-ray structure of the C-terminal fragment, containing residues 449-946, of Escherichia coli glutamine synthetase adenylyl transferase (ATase) has been determined. ATase is part of the cascade that regulates the enzymatic activity of E. coli glutamine synthetase, a key component of the cell's machinery for the uptake of ammonia. It has two enzymatic activities, adenylyl removase (AR) and adenylyl transferase (AT), which are located in distinct catalytic domains that are separated by a regulatory (R) domain. We previously reported the three-dimensional structure of the AR domain (residues 1-440). The present structure contains both the R and AT domains. AR and AT share 24% sequence identity and also contain the beta-polymerase motif that is characteristic of many nucleotidylyl transferase enzymes. The structures overlap with an rmsd of 2.4 A when the superhelical R domain is omitted. A model for the complete ATase molecule is proposed, along with some refinements of domain boundaries. A rather more speculative model for the complex of ATase with glutamine synthetase and the nitrogen signal transduction protein PII is also presented.


Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes.

  • Lin Chen‎ et al.
  • eLife‎
  • 2014‎

Plasmodium falciparum causes the most severe form of malaria in humans and is responsible for over 700,000 deaths annually. It is an obligate intracellular parasite and invades erythrocytes where it grows in a relatively protected niche. Invasion of erythrocytes is essential for parasite survival and this involves interplay of multiple protein–protein interactions. One of the most important interactions is binding of parasite invasion ligand families EBLs and PfRhs to host receptors on the surface of erythrocytes. PfRh5 is the only essential invasion ligand within the PfRh family and is an important vaccine candidate. PfRh5 binds the host receptor basigin. In this study, we have determined the crystal structure of PfRh5 using diffraction data to 2.18 Å resolution. PfRh5 exhibits a novel fold, comprising nine mostly anti-parallel α-helices encasing an N-terminal β-hairpin, with the overall shape being an elliptical disk. This is the first three-dimensional structure determined for the PfRh family of proteins. DOI: http://dx.doi.org/10.7554/eLife.04187.001


Downregulation of stathmin 1 in human gallbladder carcinoma inhibits tumor growth in vitro and in vivo.

  • Jiwen Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Stathmin 1 (STMN1) is an important cytosolic protein associated with microtubule stability that was reported to be involved in tumorigenesis. Up to our knowledge, its role in gallbladder carcinoma has not been analyzed. In this study, we found that STMN1 was significantly highly expressed in GBC by immunohistochemistry (IHC). Further research demonstrated that silencing of STMN1 inhibited cell growth in vitro. Moreover, knockdown of STMN1 induced apoptosis and delayed G2/M phase transformation in GBC cells. Our data support a rationale for further studies that the silencing of STMN1 may regulate the activity of p38 MAPK kinase and p53/p21 signal pathway. Besides, xenografted gallbladder carcinoma cells growth were significantly impaired after STMN1 was silenced in vivo. These results suggested that STMN1 played an important role in cell proliferation and migration. This provided a potential clue for investigating the therapeutic target in GBC.


SIMBAD: a sequence-independent molecular-replacement pipeline.

  • Adam J Simpkin‎ et al.
  • Acta crystallographica. Section D, Structural biology‎
  • 2018‎

The conventional approach to finding structurally similar search models for use in molecular replacement (MR) is to use the sequence of the target to search against those of a set of known structures. Sequence similarity often correlates with structure similarity. Given sufficient similarity, a known structure correctly positioned in the target cell by the MR process can provide an approximation to the unknown phases of the target. An alternative approach to identifying homologous structures suitable for MR is to exploit the measured data directly, comparing the lattice parameters or the experimentally derived structure-factor amplitudes with those of known structures. Here, SIMBAD, a new sequence-independent MR pipeline which implements these approaches, is presented. SIMBAD can identify cases of contaminant crystallization and other mishaps such as mistaken identity (swapped crystallization trays), as well as solving unsequenced targets and providing a brute-force approach where sequence-dependent search-model identification may be nontrivial, for example because of conformational diversity among identifiable homologues. The program implements a three-step pipeline to efficiently identify a suitable search model in a database of known structures. The first step performs a lattice-parameter search against the entire Protein Data Bank (PDB), rapidly determining whether or not a homologue exists in the same crystal form. The second step is designed to screen the target data for the presence of a crystallized contaminant, a not uncommon occurrence in macromolecular crystallography. Solving structures with MR in such cases can remain problematic for many years, since the search models, which are assumed to be similar to the structure of interest, are not necessarily related to the structures that have actually crystallized. To cater for this eventuality, SIMBAD rapidly screens the data against a database of known contaminant structures. Where the first two steps fail to yield a solution, a final step in SIMBAD can be invoked to perform a brute-force search of a nonredundant PDB database provided by the MoRDa MR software. Through early-access usage of SIMBAD, this approach has solved novel cases that have otherwise proved difficult to solve.


Long non-coding RNA expression profiles in gallbladder carcinoma identified using microarray analysis.

  • Jiwen Wang‎ et al.
  • Oncology letters‎
  • 2017‎

Gallbladder carcinoma (GBC) is the most common biliary tract cancer and exhibits poor patient prognosis. Previous studies have identified that long non-coding RNAs (lncRNAs) serve important regulatory roles in cancer biology. Alterations in lncRNAs are associated with several types of cancer. However, the contribution of lncRNAs to GBC remains unclear. To investigate the lncRNAs that are potentially involved in GBC, lncRNA profiles were identified in three pairs of human GBC and corresponding peri-carcinomatous tissue samples using microarray analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray data. In order to elucidate potential functions, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, and network analysis were used to determine relevant signaling pathways. Abundant RNA probes were used, and 1,758 lncRNAs and 1,254 mRNAs were detected to be differentially expressed by the microarray. Compared with para-carcinoma tissue, numerous lncRNAs were markedly upregulated or downregulated in GBC. The results demonstrated that the lncRNAs that were downregulated in GBC were more numerous compared with the lncRNAs that were upregulated. Among them, RP11-152P17.2-006 was the most upregulated, whereas CTA-941F9.9 was the most downregulated. The RT-qPCR results were consistent with the microarray data. Pathway analysis indicated that five pathways corresponded to the differentially expressed transcripts. It was demonstrated that lncRNA expression in GBC was markedly altered, and a series of novel lncRNAs associated with GBC were identified. The results of the present study suggest that the functions of lncRNAs are important in GBC development and progression.


How ligand binds to the type 1 insulin-like growth factor receptor.

  • Yibin Xu‎ et al.
  • Nature communications‎
  • 2018‎

Human type 1 insulin-like growth factor receptor is a homodimeric receptor tyrosine kinase that signals into pathways directing normal cellular growth, differentiation and proliferation, with aberrant signalling implicated in cancer. Insulin-like growth factor binding is understood to relax conformational restraints within the homodimer, initiating transphosphorylation of the tyrosine kinase domains. However, no three-dimensional structures exist for the receptor ectodomain to inform atomic-level understanding of these events. Here, we present crystal structures of the ectodomain in apo form and in complex with insulin-like growth factor I, the latter obtained by crystal soaking. These structures not only provide a wealth of detail of the growth factor interaction with the receptor's primary ligand-binding site but also indicate that ligand binding separates receptor domains by a mechanism of induced fit. Our findings are of importance to the design of agents targeting IGF-1R and its partner protein, the human insulin receptor.


lncRNA RP11-147L13.8 suppresses metastasis and chemo-resistance by modulating the phosphorylation of c-Jun protein in GBC.

  • Bohao Zheng‎ et al.
  • Molecular therapy oncolytics‎
  • 2021‎

Long non-coding RNAs (lncRNAs) have been identified as critical contributors in tumor progression for many types of cancer. However, their functions in gallbladder cancer (GBC) have not been systematically clarified. In this study, the clinical significance, biological function, and underlying mechanism of lncRNA RP11-147L13.8 in GBC were investigated. The quantitative real-time PCR result indicated that lncRNA RP11-147L13.8 was found to be recurrently downregulated in GBC tumor samples. Kaplan-Meier analysis revealed that decreased lncRNA RP11-147L13.8 expression level was associated with poor survival of GBC patients (p = 0.025). Then, both in vitro and in vivo experiments elucidated that the overexpression of lncRNA RP11-147L13.8 suppressed the migration and invasion abilities of GBC cells and promoted the sensitivity to gemcitabine of GBC cells. Furthermore, we found that lncRNA RP11-147L13.8 physically interacted with c-Jun protein and decreased the phosphorylation on serine-73 (c-Jun-Ser73), which might cause the enhancement of the migration, invasion, and sensitivity to gemcitabine of GBC tumor cells. In conclusion, our study identified lncRNA RP11-147L13.8 as a promising prognostic indicator for patients with GBC, providing insights into the molecular pathogenesis of GBC. lncRNA RP11-147L13.8 is a potential therapeutic combination for gemcitabine in GBC treatment.


LRIG1 extracellular domain: structure and function analysis.

  • Yibin Xu‎ et al.
  • Journal of molecular biology‎
  • 2015‎

We have expressed and purified three soluble fragments of the human LRIG1-ECD (extracellular domain): the LRIG1-LRR (leucine-rich repeat) domain, the LRIG1-3Ig (immunoglobulin-like) domain, and the LRIG1-LRR-1Ig fragment using baculovirus vectors in insect cells. The two LRIG1 domains crystallised so that we have been able to determine the three-dimensional structures at 2.3Å resolution. We developed a three-dimensional structure for the LRIG1-ECD using homology modelling based on the LINGO-1 structure. The LRIG1-LRR domain and the LRIG1-LRR-1Ig fragment are monomers in solution, whereas the LRIG1-3Ig domain appears to be dimeric. We could not detect any binding of the LRIG1 domains or the LRIG1-LRR-1Ig fragment to the EGF receptor (EGFR), either in solution using biosensor analysis or when the EGFR was expressed on the cell surface. The FLAG-tagged LRIG1-LRR-1Ig fragment binds weakly to colon cancer cells regardless of the presence of EGFRs. Similarly, neither the soluble LRIG1-LRR nor the LRIG1-3Ig domains nor the full-length LRIG1 co-expressed in HEK293 cells inhibited ligand-stimulated activation of cell-surface EGFR.


Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg.

  • Haiping Xu‎ et al.
  • BMC genetics‎
  • 2011‎

The age at first egg (AFE), an important indicator for sexual maturation in female chickens, is controlled by polygenes. Based on our knowledge of reproductive physiology, 6 genes including gonadotrophin releasing hormone-I (GnRH-I), neuropeptide Y (NPY), dopamine D2 receptor (DRD2), vasoactive intestinal polypeptide (VIP), VIP receptor-1 (VIPR-1), and prolactin (PRL), were selected as candidates for influencing AFE. Additionally, the region between ADL0201 and MCW0241 of chromosome Z was chosen as the candidate QTL region according to some QTL databases. The objective of the present study was to investigate the effects of mutations in candidate genes and the QTL region on chicken AFE.


Mutation of TWNK Gene Is One of the Reasons of Runting and Stunting Syndrome Characterized by mtDNA Depletion in Sex-Linked Dwarf Chicken.

  • Bowen Hu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Runting and stunting syndrome (RSS), which is characterized by low body weight, generally occurs early in life and leads to considerable economic losses in the commercial broiler industry. Our previous study has suggested that RSS is associated with mitochondria dysfunction in sex-linked dwarf (SLD) chickens. However, the molecular mechanism of RSS remains unknown. Based on the molecular diagnostics of mitochondrial diseases, we identified a recessive mutation c. 409G > A (p. Ala137Thr) of Twinkle mitochondrial DNA helicase (TWNK) gene and mitochondrial DNA (mtDNA) depletion in RSS chickens' livers from strain N301. Bioinformatics investigations supported the pathogenicity of the TWNK mutation that is located on the extended peptide linker of Twinkle primase domain and might further lead to mtDNA depletion in chicken. Furthermore, overexpression of wild-type TWNK increases mtDNA copy number, whereas overexpression of TWNK A137T causes mtDNA depletion in vitro. Additionally, the TWNK c. 409G > A mutation showed significant associations with body weight, daily gain, pectoralis weight, crureus weight, and abdominal fat weight. Taken together, we corroborated that the recessive TWNK c. 409G > A (p. Ala137Thr) mutation is associated with RSS characterized by mtDNA depletion in SLD chicken.


High infiltration of mast cells is associated with improved response to adjuvant chemotherapy in gallbladder cancer.

  • Xiaobo Bo‎ et al.
  • Cancer science‎
  • 2020‎

Recent studies have reported that tumor-infiltrating mast cells (TIM) play an important role in tumor regression, but the effect of TIM in gallbladder cancer (GBC) remains unclear. The present study aims to investigate the prognostic value of TIM in GBC patients and its responsiveness to gemcitabine-based adjuvant chemotherapy (ACT). A total of 298 GBC patients from Zhongshan Hospital were recruited for this study. TIM infiltration was measured by immunohistochemical staining. Accumulation of TIM is significantly associated with prolonged overall survival in GBC patients. The benefit from gemcitabine-based ACT was superior among patients with high infiltration of TIM with GBC. Multivariate analysis identified TIM infiltration as an independent prognostic factor for overall survival. A heatmap showed that TIM-activated gene signatures were positively correlated with CD8+ T cells' gene signatures. Gene set enrichment analysis (GSEA) suggested that TIM was related to multiple T cell-related processes and signaling pathways, including the interferon gamma signaling pathway and the leukocyte migration signaling pathway. It was confirmed that CD8+ T cell infiltration was positively correlated with high TIM infiltration in tissue microarray (TMA), suggesting that TIM infiltration was linked to the immune surveillance in GBC. TIM can be used as an independent prognostic factor and a predictor of therapeutic response of gemcitabine-based ACT in GBC patients, which may mediate immune surveillance by recruiting and activating CD8+ T cells in GBC.


Physical and chemical descriptors for predicting interfacial thermal resistance.

  • Yen-Ju Wu‎ et al.
  • Scientific data‎
  • 2020‎

Heat transfer at interfaces plays a critical role in material design and device performance. Higher interfacial thermal resistances (ITRs) affect the device efficiency and increase the energy consumption. Conversely, higher ITRs can enhance the figure of merit of thermoelectric materials by achieving ultra-low thermal conductivity via nanostructuring. This study proposes a dataset of descriptors for predicting the ITRs. The dataset includes two parts: one part consists of ITRs data collected from 87 experimental papers and the other part consists of the descriptors of 289 materials, which can construct over 80,000 pair-material systems for ITRs prediction. The former part is composed of over 1300 data points of metal/nonmetal, nonmetal/nonmetal, and metal/metal interfaces. The latter part consists of physical and chemical properties that are highly correlated to the ITRs. The synthesis method of the materials and the thermal measurement technique are also recorded in the dataset for further analyses. These datasets can be applied not only to ITRs predictions but also to thermal-property predictions or heat transfer on various material systems.


How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor.

  • Yibin Xu‎ et al.
  • Structure (London, England : 1993)‎
  • 2022‎

Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands.


Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population.

  • Rongyang Pan‎ et al.
  • Poultry science‎
  • 2023‎

Carcass traits in broiler chickens are complex traits that are influenced by multiple genes. To gain deeper insights into the genetic mechanisms underlying carcass traits, here we conducted a weighted single-step genome-wide association study (wssGWAS) in a population of Chinese yellow-feathered chicken. The objective was to identify genomic regions and candidate genes associated with carcass weight (CW), eviscerated weight with giblets (EWG), eviscerated weight (EW), breast muscle weight (BMW), drumstick weight (DW), abdominal fat weight (AFW), abdominal fat percentage (AFP), gizzard weight (GW), and intestine length (IL). A total of 1,338 broiler chickens with phenotypic and pedigree information were included in this study. Of these, 435 chickens were genotyped using a 600K single nucleotide polymorphism chip for association analysis. The results indicate that the most significant regions for 9 traits explained 2.38% to 5.09% of the phenotypic variation, from which the region of 194.53 to 194.63Mb on chromosome 1 with the gene RELT and FAM168A identified on it was significantly associated with CW, EWG, EW, BMW, and DW. Meanwhile, the 5 traits have a strong genetic correlation, indicating that the region and the genes can be used for further research. In addition, some candidate genes associated with skeletal muscle development, fat deposition regulation, intestinal repair, and protection were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that the genes are involved in processes such as vascular development (CD34, FGF7, FGFR3, ITGB1BP1, SEMA5A, LOXL2), bone formation (FGFR3, MATN1, MEF2D, DHRS3, SKI, STC1, HOXB1, HOXB3, TIPARP), and anatomical size regulation (ADD2, AKT1, CFTR, EDN3, FLII, HCLS1, ITGB1BP1, SEMA5A, SHC1, ULK1, DSTN, GSK3B, BORCS8, GRIP2). In conclusion, the integration of phenotype, genotype, and pedigree information without creating pseudo-phenotype will facilitate the genetic improvement of carcass traits in chickens, providing valuable insights into the genetic architecture and potential candidate genes underlying carcass traits, enriching our understanding and contributing to the breeding of high-quality broiler chickens.


Effects of water-nitrogen coupling on water and salt environment and root distribution in Suaeda salsa.

  • Qiang Xu‎ et al.
  • Frontiers in plant science‎
  • 2024‎

Understanding the spatial distribution of crop roots is crucial for effectively managing crop water and fertilizer. We investigate the effects of water-nitrogen coupling on the water-salt environment and root distribution in the root zone of S. salsa. Three irrigation levels were established, calculated according to 0.35 (W1), 0.50 (W2), and 0.65 (W3) of local ET0. The three nitrogen levels were 150 (N1), 250 (N2), and 350 (N3) kg·hm-2 in a complete combination design. With the augmentation of irrigation water and nitrogen application, the total root weight density of the root system of Suaeda salsa increased from 17.18×10-3 g·cm-3 to 27.91×10-3 g·cm-3. The distribution of soil water suction significantly influences the root distribution of Suaeda salsa in saline soil, causing a transition from a narrow deep type to a wide shallow type. Under the W2 irrigation level, soil water suction ranges from 1485.60 to 1726.59 KPa, which can provide water for S. salsa.it becomes feasible to attain the necessary water and salt environment for the growth and development of S. salsa, resulting in the attainment of maximum biomass, ash content, and salt uptake. No significant differences in the biomass, ash content, and salt uptake of S. salsa was noted between N2 and N3 nitrogen application levels (p > 0.05).The optimal irrigation volume and nitrogen application level were 0.50 ET0 and 250 kg·hm-2, respectively. The results of this study provide a scientific basis for the large-scale planting of S. salsa in extreme arid areas to improve and utilize saline wastelands.


Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex.

  • Cong Ma‎ et al.
  • Nature structural & molecular biology‎
  • 2011‎

During the priming step that leaves synaptic vesicles ready for neurotransmitter release, the SNARE syntaxin-1 transitions from a closed conformation that binds Munc18-1 tightly to an open conformation within the highly stable SNARE complex. Control of this conformational transition is important for brain function, but the underlying mechanism is unknown. NMR and fluorescence experiments now show that the Munc13-1 MUN domain, which plays a central role in vesicle priming, markedly accelerates the transition from the syntaxin-1-Munc18-1 complex to the SNARE complex. This activity depends on weak interactions of the MUN domain with the syntaxin-1 SNARE motif, and probably with Munc18-1. Together with available physiological data, these results provide a defined molecular basis for synaptic vesicle priming, and they illustrate how weak protein-protein interactions can play crucial biological roles by promoting transitions between high-affinity macromolecular assemblies.


Chicken GHR natural antisense transcript regulates GHR mRNA in LMH cells.

  • Li Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Growth hormone receptor (GHR) played key roles in human and animal growth. Both human laron type dwarfism and sex linked dwarf chicken were caused by the mutation of GHR gene. In this study, we identified an endogenously expressed long non-coding natural antisense transcript, GHR-AS, which overlapped with the GHR mRNA (GHR-S) in a tail to tail manner. Spatial and temporal expression analyses indicated that GHR-AS were highly expressed in chicken liver and displayed ascending with the development of chicken from E10 to 3 w of age. Interfering GHR-AS caused GHR-S decreasing, accompanied with increasing of the inactive gene indicator, H3K9me2, in the GHR-S promoter regions in LMH cells. RNase A experiment exhibited that GHR-AS and GHR-S can form double strand RNAs at the last exon of GHR gene in vivo and in vitro, which hinted they could act on each other via the region. In addition, the levels of GHR-S and GHR-AS can be affected by DNA methylation. Compared the normal chicken with the dwarfs, the negative correlation trends were showed between the GHR-S promoter methylation status and the GHR-AS levels. This is the first report of that GHR gene possessed natural antisense transcript and the results presented here further highlight the fine and complicated regulating mechanism of GHR gene in chicken development.


Improving the recall of biomedical named entity recognition with label re-correction and knowledge distillation.

  • Huiwei Zhou‎ et al.
  • BMC bioinformatics‎
  • 2021‎

Biomedical named entity recognition is one of the most essential tasks in biomedical information extraction. Previous studies suffer from inadequate annotated datasets, especially the limited knowledge contained in them.


Research Note: Association of single nucleotide polymorphism of AKT3 with egg production traits in White Muscovy ducks (Cairina moschata).

  • Semiu Folaniyi Bello‎ et al.
  • Poultry science‎
  • 2022‎

Prior studies on transcriptomes of hypothalamus and ovary revealed that AKT3 is one of the candidate genes that might affect egg production in White Muscovy ducks. The role of AKT3 in the uterus during reproductive processes cannot be overemphasized. However, functional role of this gene in the tissues and on egg production traits of Muscovy ducks remains unknown. To identify the relationship between AKT3 and egg production traits in ducks, relative expression profile was first examined prior to identifying the variants within AKT3 that may underscore egg production traits [age at first egg (AFE), number of eggs at 300 d (N300D), and number of eggs at 59 wk (N59W)] in 549 ducks. The mRNA expression of AKT3 gene in high producing (HP) ducks was significantly higher than low producing (LP) ducks in the ovary, oviduct, and hypothalamus (P < 0.05 or 0.001). Three variants in AKT3 (C-3631A, C-3766T, and C-3953T) and high linkage block between C-3766T and C-3953T which are significantly (P < 0.05) associated with N300D and N59W were discovered. This study elucidates novel knowledge on the molecular mechanism of AKT3 that might be regulating egg production traits in Muscovy ducks.


Transcriptome analysis of differentially expressed circRNAs miRNAs and mRNAs during the challenge of coccidiosis.

  • Xiaolan Chen‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Avian coccidiosis is a common enzootic disease caused by infection of Eimeria species parasites. It causes huge economic losses in the global poultry industry. Current control using anticoccidial drugs or vaccination is limited due to drug resistance and the relatively high cost of vaccines. Improving host genetic resistance to Eimeria species is considered an effective strategy for improved control of coccidiosis. Circular RNAs (circRNAs) have been found to function as biomarkers or diagnoses of various kinds of diseases. The molecular biological functions of circRNAs, miRNAs, and mRNAs related to Sasso chicken have not yet been described during Eimeria species challenge. In this study, RNA-seq was used to profile the expression pattern of circRNAs, miRNAs, and mRNAs in spleens from Eimeria tenella-infected and non-infected commercial dual-purpose Sasso T445 breed chickens. Results showed a total of 40 differentially expressed circRNAs (DEcircRNAs), 31 differentially expressed miRNAs (DEmiRNAs), and 820 differentially expressed genes (DEmRNAs) between infected and non-infected chickens. Regulatory networks were constructed between differentially expressed circRNAs, miRNAs, and mRNAs to offer insights into the interaction mechanisms between chickens and Eimeria spp. Functional validation of a significantly differentially expressed circRNA, circMGAT5, revealed that circMGAT5 could sponge miR-132c-5p to promote the expression of the miR-132c-5p target gene monocyte to macrophage differentiation-associated (MMD) during the infection of E. tenella sporozoites or LPS stimulation. Pathologically, knockdown of circMGAT5 significantly upregulated the expression of macrophage surface markers and the macrophage activation marker, F4/80 and MHC-II, which indicated that circMGAT5 might inhibit the activation of macrophage. miR-132c-5p markedly facilitated the expression of F4/80 and MHC-II while circMGAT5 could attenuate the increase of F4/80 and MHC-II induced by miR-132c-5p, indicating that circMGAT5 exhibited function through the circMGAT5-miR-132c-5p-MMD axis. Together, our results indicate that circRNAs exhibit their resistance or susceptive roles during E. tenella infection. Among these, circMGAT5 may inhibit the activation of macrophages through the circMGAT5-miR-132c-5p-MMD axis to participate in the immune response induced by Eimeria infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: