Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma.

  • Patrizia Cammareri‎ et al.
  • Nature communications‎
  • 2016‎

Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin. MAPK pathway hyperactivation (through Braf(V600E) or Kras(G12D) knockin) and TGFβ signalling ablation (through Tgfbr1 deletion) in LGR5(+ve) stem cells enables rapid cSCC development in the mouse. Mutation of Tp53 (which is commonly mutated in sporadic cSCC) coupled with Tgfbr1 deletion in LGR5(+ve) cells also results in cSCC development. These findings indicate that LGR5(+ve) stem cells may act as cells of origin for cSCC, and that RAS/RAF/MAPK pathway hyperactivation or Tp53 mutation, coupled with loss of TGFβ signalling, are driving events of skin tumorigenesis.


Development of Plasmodium falciparum liver-stages in hepatocytes derived from human fetal liver organoid cultures.

  • Annie S P Yang‎ et al.
  • Nature communications‎
  • 2023‎

Plasmodium falciparum (Pf) parasite development in liver represents the initial step of the life-cycle in the human host after a Pf-infected mosquito bite. While an attractive stage for life-cycle interruption, understanding of parasite-hepatocyte interaction is inadequate due to limitations of existing in vitro models. We explore the suitability of hepatocyte organoids (HepOrgs) for Pf-development and show that these cells permitted parasite invasion, differentiation and maturation of different Pf strains. Single-cell messenger RNA sequencing (scRNAseq) of Pf-infected HepOrg cells has identified 80 Pf-transcripts upregulated on day 5 post-infection. Transcriptional profile changes are found involving distinct metabolic pathways in hepatocytes with Scavenger Receptor B1 (SR-B1) transcripts highly upregulated. A novel functional involvement in schizont maturation is confirmed in fresh primary hepatocytes. Thus, HepOrgs provide a strong foundation for a versatile in vitro model for Pf liver-stages accommodating basic biological studies and accelerated clinical development of novel tools for malaria control.


Parental haplotype-specific single-cell transcriptomics reveal incomplete epigenetic reprogramming in human female germ cells.

  • Ábel Vértesy‎ et al.
  • Nature communications‎
  • 2018‎

In contrast to mouse, human female germ cells develop asynchronously. Germ cells transition to meiosis, erase genomic imprints, and reactivate the X chromosome. It is unknown if these events all appear asynchronously, and how they relate to each other. Here we combine exome sequencing of human fetal and maternal tissues with single-cell RNA-sequencing of five donors. We reconstruct full parental haplotypes and quantify changes in parental allele-specific expression, genome-wide. First we distinguish primordial germ cells (PGC), pre-meiotic, and meiotic transcriptional stages. Next we demonstrate that germ cells from various stages monoallelically express imprinted genes and confirm this by methylation patterns. Finally, we show that roughly 30% of the PGCs are still reactivating their inactive X chromosome and that this is related to transcriptional stage rather than fetal age. Altogether, we uncover the complexity and cell-to-cell heterogeneity of transcriptional and epigenetic remodeling in female human germ cells.


Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture.

  • Giovanni Giuseppe Giobbe‎ et al.
  • Nature communications‎
  • 2019‎

Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth. These gels possess the biochemical signature of tissue-specific ECM and have the potential for clinical translation. Gels from decellularized porcine small intestine (SI) mucosa/submucosa enable formation and growth of endoderm-derived human organoids, such as gastric, hepatic, pancreatic, and SI. ECM gels can be used as a tool for direct human organoid derivation, for cell growth with a stable transcriptomic signature, and for in vivo organoid delivery. The development of these ECM-derived hydrogels opens up the potential for human organoids to be used clinically.


An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity.

  • Camilla Calandrini‎ et al.
  • Nature communications‎
  • 2020‎

Kidney tumours are among the most common solid tumours in children, comprising distinct subtypes differing in many aspects, including cell-of-origin, genetics, and pathology. Pre-clinical cell models capturing the disease heterogeneity are currently lacking. Here, we describe the first paediatric cancer organoid biobank. It contains tumour and matching normal kidney organoids from over 50 children with different subtypes of kidney cancer, including Wilms tumours, malignant rhabdoid tumours, renal cell carcinomas, and congenital mesoblastic nephromas. Paediatric kidney tumour organoids retain key properties of native tumours, useful for revealing patient-specific drug sensitivities. Using single cell RNA-sequencing and high resolution 3D imaging, we further demonstrate that organoid cultures derived from Wilms tumours consist of multiple different cell types, including epithelial, stromal and blastemal-like cells. Our organoid biobank captures the heterogeneity of paediatric kidney tumours, providing a representative collection of well-characterised models for basic cancer research, drug-screening and personalised medicine.


5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation.

  • Yong-Hee Cho‎ et al.
  • Nature communications‎
  • 2020‎

5-Fluorouracil (5-FU) remains the first-line treatment for colorectal cancer (CRC). Although 5-FU initially de-bulks the tumor mass, recurrence after chemotherapy is the barrier to effective clinical outcomes for CRC patients. Here, we demonstrate that p53 promotes WNT3 transcription, leading to activation of the WNT/β-catenin pathway in ApcMin/+/Lgr5EGFP mice, CRC patient-derived tumor organoids (PDTOs) and patient-derived tumor cells (PDCs). Through this regulation, 5-FU induces activation and enrichment of cancer stem cells (CSCs) in the residual tumors, contributing to recurrence after treatment. Combinatorial treatment of a WNT inhibitor and 5-FU effectively suppresses the CSCs and reduces tumor regrowth after discontinuation of treatment. These findings indicate p53 as a critical mediator of 5-FU-induced CSC activation via the WNT/β-catenin signaling pathway and highlight the significance of combinatorial treatment of WNT inhibitor and 5-FU as a compelling therapeutic strategy to improve the poor outcomes of current 5-FU-based therapies for CRC patients.


DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells.

  • Matthias S Roost‎ et al.
  • Nature communications‎
  • 2017‎

Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal development. Analysis of multiple isogenic organ sets shows that organ-specific DNA methylation patterns are highly dynamic between week 9 (W9) and W22 of gestation. We investigate the impact of reprogramming on organ-specific DNA methylation by generating human induced pluripotent stem cell (hiPSC) lines from six isogenic organs. All isogenic hiPSCs acquire DNA methylation patterns comparable to existing hPSCs. However, hiPSCs derived from fetal brain retain brain-specific DNA methylation marks that seem sufficient to confer higher propensity to differentiate to neural derivatives. This systematic analysis of human fetal organs during development and associated isogenic hiPSC lines provides insights in the role of DNA methylation in lineage commitment and epigenetic reprogramming in humans.While DNA methylation and gene expression data are widely available for animal models, comprehensive data from human development is rarer. Here, the authors generated transcriptional and DNA methylation data from 21 organs during human development and 6 isogenic induced pluripotent stem cell lines.


Immune subset-committed proliferating cells populate the human foetal intestine throughout the second trimester of gestation.

  • Nannan Guo‎ et al.
  • Nature communications‎
  • 2023‎

The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.


Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures.

  • Anna Urciuolo‎ et al.
  • Nature communications‎
  • 2023‎

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.


A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium.

  • Franka H van der Linden‎ et al.
  • Nature communications‎
  • 2021‎

The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3 ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2-9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids.


A tissue-intrinsic IL-33/EGF circuit promotes epithelial regeneration after intestinal injury.

  • Marco Calafiore‎ et al.
  • Nature communications‎
  • 2023‎

Intestinal stem cells (ISCs) maintain the epithelial lining of the intestines, but mechanisms regulating ISCs and their niche after damage remain poorly understood. Utilizing radiation injury to model intestinal pathology, we report here that the Interleukin-33 (IL-33)/ST2 axis, an immunomodulatory pathway monitored clinically as an intestinal injury biomarker, regulates intrinsic epithelial regeneration by inducing production of epidermal growth factor (EGF). Three-dimensional imaging and lineage-specific RiboTag induction within the stem cell compartment indicated that ISCs expressed IL-33 in response to radiation injury. Neighboring Paneth cells responded to IL-33 by augmenting production of EGF, which promoted ISC recovery and epithelial regeneration. These findings reveal an unknown pathway of niche regulation and crypt regeneration whereby the niche responds dynamically upon injury and the stem cells orchestrate regeneration by regulating their niche. This regenerative circuit also highlights the breadth of IL-33 activity beyond immunomodulation and the therapeutic potential of EGF administration for treatment of intestinal injury.


Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation.

  • Chuntao Zhao‎ et al.
  • Nature communications‎
  • 2016‎

Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis.


Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2.

  • Salvatore Simmini‎ et al.
  • Nature communications‎
  • 2014‎

The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene repertoire that they express. Both types of stem cells have been shown to grow from single cells into 3D structures (organoids) in vitro. We show that single adult Lgr5-positive stem cells, isolated from small intestinal organoids, require Cdx2 to maintain their intestinal identity and are converted cell-autonomously into pyloric stem cells in the absence of this transcription factor. Clonal descendants of Cdx2(null) small intestinal stem cells enter the gastric differentiation program instead of producing intestinal derivatives. We show that the intestinal genetic programme is critically dependent on the single transcription factor encoding gene Cdx2.


SARS-CoV-2 infection and replication in human gastric organoids.

  • Giovanni Giuseppe Giobbe‎ et al.
  • Nature communications‎
  • 2021‎

COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.


Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss.

  • Laura Rüland‎ et al.
  • Nature communications‎
  • 2023‎

Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.


BMP signalling differentially regulates distinct haematopoietic stem cell types.

  • Mihaela Crisan‎ et al.
  • Nature communications‎
  • 2015‎

Adult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they are first generated in the aorta-gonad-mesonephros region, but at later developmental stages, its role in HSCs is controversial. Here we show that HSCs in murine fetal liver and the bone marrow are of two types that can be prospectively isolated--BMP activated and non-BMP activated. Clonal transplantation demonstrates that they have distinct haematopoietic lineage outputs. Moreover, the two HSC types differ in intrinsic genetic programs, thus supporting a role for the BMP signalling axis in the regulation of HSC heterogeneity and lineage output. Our findings provide insight into the molecular control mechanisms that define HSC types and have important implications for reprogramming cells to HSC fate and treatments targeting distinct HSC types.


Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice.

  • Tatyana Grinenko‎ et al.
  • Nature communications‎
  • 2018‎

Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.


Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type.

  • Gregor-Alexander Pilz‎ et al.
  • Nature communications‎
  • 2013‎

The mechanisms governing the expansion of neuron number in specific brain regions are still poorly understood. Enlarged neuron numbers in different species are often anticipated by increased numbers of progenitors dividing in the subventricular zone. Here we present live imaging analysis of radial glial cells and their progeny in the ventral telencephalon, the region with the largest subventricular zone in the murine brain during neurogenesis. We observe lineage amplification by a new type of progenitor, including bipolar radial glial cells dividing at subapical positions and generating further proliferating progeny. The frequency of this new type of progenitor is increased not only in larger clones of the mouse lateral ganglionic eminence but also in cerebral cortices of gyrated species, and upon inducing gyrification in the murine cerebral cortex. This implies key roles of this new type of radial glia in ontogeny and phylogeny.


Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells.

  • Nesrin Tüysüz‎ et al.
  • Nature communications‎
  • 2017‎

Wnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature, and its solubilization requires a detergent, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), that interferes with stem cell self-renewal. By stabilizing the Wnt3a protein using phospholipids and cholesterol as carriers, we address both problems: Wnt activity remains stable in serum-free media, while non-toxic carriers allow the use of high Wnt concentrations. Stabilized Wnt3a supports strongly increased self-renewal of organ and embryonic stem cells and the serum-free establishment of human organoids from healthy and diseased intestine and liver. Moreover, the lipophilicity of Wnt3a protein greatly facilitates its purification. Our findings remove a major obstacle impeding clinical applications of adult stem cells and offer advantages for all cell culture uses of Wnt3a protein.


A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses.

  • Joep Beumer‎ et al.
  • Nature communications‎
  • 2021‎

Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: