Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells.

  • Hong Liu‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Loss of tissue polarity and increased proliferation are the characteristic alterations of the breast tumor phenotype. To investigate these processes, we used a three-dimensional (3D) culture system in which malignant human breast cells can be reverted to a normal phenotype by exposure to inhibitors of phosphatidylinositol 3-kinase (PI3K). Using this assay, we find that Akt and Rac1 act as downstream effectors of PI3K and function as control points of cellular proliferation and tissue polarity, respectively. Our results also demonstrate that the PI3K signaling pathway is an integral component of the overall signaling network induced by growth in 3D, as reversion affected by inhibition of PI3K signaling also down-modulates the endogenous levels of beta1 integrin and epidermal growth factor receptor, the upstream modulators of PI3K, and up-regulates PTEN, the antagonist of PI3K. These findings reveal key events of the PI3K pathway that play distinct roles to maintain tissue polarity and that when disrupted are instrumental in the malignant phenotype.


Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers.

  • Christine Mehner‎ et al.
  • Oncotarget‎
  • 2015‎

Ovarian cancer represents the most lethal tumor type among malignancies of the female reproductive system. Overall survival rates remain low. In this study, we identify the serine protease inhibitor Kazal type 1 (SPINK1) as a potential therapeutic target for a subset of ovarian cancers. We show that SPINK1 drives ovarian cancer cell proliferation through activation of epidermal growth factor receptor (EGFR) signaling, and that SPINK1 promotes resistance to anoikis through a distinct mechanism involving protease inhibition. In analyses of ovarian tumor specimens from a Mayo Clinic cohort of 490 patients, we further find that SPINK1 immunostaining represents an independent prognostic factor for poor survival, with the strongest association in patients with nonserous histological tumor subtypes (endometrioid, clear cell, and mucinous). This study provides novel insight into the fundamental processes underlying ovarian cancer progression, and also suggests new avenues for development of molecularly targeted therapies.


Osteopontin is a multi-faceted pro-tumorigenic driver for central nervous system lymphoma.

  • Qiu Yushi‎ et al.
  • Oncotarget‎
  • 2016‎

Osteopontin (OPN) is the most upregulated gene in primary central nervous system lymphoma (PCNSL) compared to non-CNS diffuse large B cell lymphoma (DLBCL). We show here that OPN is a key mediator of intracerebral tumor growth, invasion, and dissemination in CNS lymphoma, and that these effects depend upon activation of NF-κB. We further show that activation of NF-κB by OPN occurs through a unique mechanism in which intracellular OPN (iOPN) causes transcriptional downregulation of the NF-κB inhibitors, A20/TNFAIP3 and ABIN1/TNIP1, and secretory OPN (sOPN) promotes receptor-mediated activation of NF-κB. We also identify NF-κB-mediated induction of matrix metalloproteinase-8 (MMP-8) as a specific feature of OPN-mediated tissue invasion. These results implicate OPN as a candidate for development of targeted therapy for patients with PCNSL.


Involvement of hnRNP A1 in the matrix metalloprotease-3-dependent regulation of Rac1 pre-mRNA splicing.

  • Federico Pelisch‎ et al.
  • Journal of cellular biochemistry‎
  • 2012‎

Rac1b is an alternatively spliced isoform of the small GTPase Rac1 that includes the 57-nucleotide exon 3b. Rac1b was originally identified through its over-expression in breast and colorectal cancer cells, and has subsequently been implicated as a key player in a number of different oncogenic signaling pathways, including tumorigenic transformation of mammary epithelial cells exposed to matrix metalloproteinase-3 (MMP-3). Although many of the cellular consequences of Rac1b activity have been recently described, the molecular mechanism by which MMP-3 treatment leads to Rac1b induction has not been defined. Here we use proteomic methods to identify heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as a factor involved in Rac1 splicing regulation. We find that hnRNP A1 binds to Rac1 exon 3b in mouse mammary epithelial cells, repressing its inclusion into mature mRNA. We also find that exposure of cells to MMP-3 leads to release of hnRNP A1 from exon 3b and the consequent generation of Rac1b. Finally, we analyze normal breast tissue and breast cancer biopsies, and identify an inverse correlation between expression of hnRNP A1 and Rac1b, suggesting the existence of this regulatory axis in vivo. These results provide new insights on how extracellular signals regulate alternative splicing, contributing to cellular transformation and development of breast cancer.


PRSS3/Mesotrypsin and kallikrein-related peptidase 5 are associated with poor prognosis and contribute to tumor cell invasion and growth in lung adenocarcinoma.

  • Honghai Ma‎ et al.
  • Scientific reports‎
  • 2019‎

Serine proteases have been implicated as key drivers and facilitators of lung cancer malignancy, and while these proteins represent straightforward targets for therapeutic inhibitors, identification of optimal points for intervention has been complicated by the complex networks in which these enzymes function. Here we implicate a signaling pathway consisting of PRSS3/mesotrypsin and kallikrein-related peptidase 5 (KLK5) in lung adenocarcinoma malignancy. We show that elevated PRSS3/mesotrypsin expression is prognostic for poor outcome for patients with lung adenocarcinoma, and that genetic or pharmacologic targeting of PRSS3/mesotrypsin reduces lung adenocarcinoma cell invasiveness and proliferation. We further show that genetic targeting of KLK5, a known target of PRSS3/mesotrypsin, phenocopies the effect of PRSS3/mesotrypsin knockdown, and also that elevated expression of KLK5 is similarly prognostic for outcome in lung adenocarcinoma. Finally, we use transcriptional profiling experiments to show that PRSS3/mesotrypsin and KLK5 control a common malignancy-promoting pathway. These experiments implicate a potential PRSS3/mesotrypsin-KLK5 signaling module in lung adenocarcinoma and reveal the potential therapeutic benefit of selectively targeting these pathways.


Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy.

  • Christina A von Roemeling‎ et al.
  • Oncotarget‎
  • 2018‎

Here we present an innovative computational-based drug discovery strategy, coupled with machine-based learning and functional assessment, for the rational design of novel small molecule inhibitors of the lipogenic enzyme stearoyl-CoA desaturase 1 (SCD1). Our methods resulted in the discovery of several unique molecules, of which our lead compound SSI-4 demonstrates potent anti-tumor activity, with an excellent pharmacokinetic and toxicology profile. We improve upon key characteristics, including chemoinformatics and absorption/distribution/metabolism/excretion (ADME) toxicity, while driving the IC50 to 0.6 nM in some instances. This approach to drug design can be executed in smaller research settings, applied to a wealth of other targets, and paves a path forward for bringing small-batch based drug programs into the Clinic.


NanoString-based breast cancer risk prediction for women with sclerosing adenosis.

  • Stacey J Winham‎ et al.
  • Breast cancer research and treatment‎
  • 2017‎

Sclerosing adenosis (SA), found in ¼ of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA.


Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer.

  • Evette S Radisky‎ et al.
  • Journal of cellular biochemistry‎
  • 2017‎

Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.


Activity-based protein profiling reveals active serine proteases that drive malignancy of human ovarian clear cell carcinoma.

  • Christine Mehner‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.


Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis.

  • Cory M Yamashita‎ et al.
  • The American journal of pathology‎
  • 2011‎

Idiopathic pulmonary fibrosis (IPF) may be triggered by epithelial injury that results in aberrant production of growth factors, cytokines, and proteinases, leading to proliferation of myofibroblasts, excess deposition of collagen, and destruction of the lung architecture. The precise mechanisms and key signaling mediators responsible for this aberrant repair process remain unclear. We assessed the importance of matrix metalloproteinase-3 (MMP-3) in the pathogenesis of IPF through i) determination of MMP-3 expression in patients with IPF, ii) in vivo experiments examining the relevance of MMP-3 in experimental models of fibrosis, and iii) in vitro experiments to elucidate possible mechanisms of action. Gene expression analysis, quantitative RT-PCR, and Western blot analysis of explanted human lungs revealed enhanced expression of MMP-3 in IPF, compared with control. Transient adenoviral vector-mediated expression of recombinant MMP-3 in rat lung resulted in accumulation of myofibroblasts and pulmonary fibrosis. Conversely, MMP-3-null mice were protected against bleomycin-induced pulmonary fibrosis. In vitro treatment of cultured lung epithelial cells with purified MMP-3 resulted in activation of the β-catenin signaling pathway, via cleavage of E-cadherin, and induction of epithelial-mesenchymal transition. These processes were inhibited in bleomycin-treated MMP-3-null mice, as assessed by cytosolic translocation of β-catenin and cyclin D1 expression. These observations support a novel role for MMP-3 in the pathogenesis of IPF, through activation of β-catenin signaling and induction of epithelial-mesenchymal transition.


PEGylation extends circulation half-life while preserving in vitro and in vivo activity of tissue inhibitor of metalloproteinases-1 (TIMP-1).

  • Jyotica Batra‎ et al.
  • PloS one‎
  • 2012‎

Excess proteolytic activity of matrix metalloproteinases (MMPs) contributes to the development of arthritis, cardiovascular diseases and cancer progression, implicating these enzymes as therapeutic targets. While many small molecule inhibitors of MMPs have been developed, clinical uses have been limited, in part by toxicity and off-target effects. Development of the endogenous tissue inhibitors of metalloproteinases (TIMPs) as recombinant biopharmaceuticals represents an alternative therapeutic approach; however, the short plasma half-life of recombinant TIMPs has restricted their potential in this arena. To overcome this limitation, we have modified recombinant human TIMP-1 (rhTIMP-1) by PEGylation on lysine residues. We analyzed a mixture of mono- and di-PEGylated rhTIMP-1 species modified by attachment of 20 kDa mPEG chains (PEG(20K)-TIMP-1), as confirmed by SELDI-TOF mass spectrometry. This preparation retained complete inhibitory activity toward the MMP-3 catalytic domain and partial inhibitory activity toward full length MMP-9. Pharmacokinetic evaluation showed that PEGylation extended the plasma half-life of rhTIMP-1 in mice from 1.1 h to 28 h. In biological assays, PEG(20K)-TIMP-1 inhibited both MMP-dependent cancer cell invasion and tumor cell associated gelatinase activity. Overall these results suggest that PEGylated TIMP-1 exhibits improved potential for development as an anti-cancer recombinant protein therapeutic, and additionally may offer potential for clinical applications in the treatment of other diseases.


The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.

  • Tina J Hieken‎ et al.
  • Scientific reports‎
  • 2016‎

Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention.


Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma.

  • Christine Mehner‎ et al.
  • Oncogene‎
  • 2020‎

A major clinical challenge of ovarian cancer is the development of malignant ascites accompanied by widespread peritoneal metastasis. In ovarian clear cell carcinoma (OCCC), a challenging subtype of ovarian cancer, this problem is compounded by near-universal primary chemoresistance; patients with advanced stage OCCC thus lack effective therapies and face extremely poor survival rates. Here we show that tumor-cell-expressed serine protease inhibitor Kazal type 1 (SPINK1) is a key driver of OCCC progression and metastasis. Using cell culture models of human OCCC, we find that shRNA silencing of SPINK1 sensitizes tumor cells to anoikis and inhibits proliferation. Knockdown of SPINK1 in OCCC cells also profoundly suppresses peritoneal metastasis in mouse implantation models of human OCCC. We next identify a novel autocrine signaling axis in OCCC cells whereby tumor-cell-produced interleukin-6 (IL-6) regulates SPINK1 expression to stimulate a common protumorigenic gene expression pattern leading to anoikis resistance and proliferation of OCCC cells. We further demonstrate that this signaling pathway can be successfully interrupted with the IL-6Rα inhibitor tocilizumab, sensitizing cells to anoikis in vitro and reducing metastasis in vivo. These results suggest that clinical trials of IL-6 pathway inhibitors in OCCC may be warranted, and that SPINK1 might offer a candidate predictive biomarker in this population.


Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration.

  • Christina A Von Roemeling‎ et al.
  • Oncotarget‎
  • 2014‎

Currently there is a lack of targeted therapies that lead to long-term attenuation or regression of disease in patients with advanced clear cell renal cell carcinoma (ccRCC). Our group has implemented a high-throughput genetic analysis coupled with a high-throughput proliferative screen in order to investigate the genetic contributions of a large cohort of overexpressed genes at the functional level in an effort to better understand factors involved in tumor initiation and progression. Patient gene array analysis identified transcripts that are consistently elevated in patient ccRCC as compared to matched normal renal tissues. This was followed by a high-throughput lentivirus screen, independently targeting 195 overexpressed transcripts identified in the gene array in four ccRCC cell lines. This revealed 31 'hits' that contribute to ccRCC cell proliferation. Many of the hits identified are not only presented in the context of ccRCC for the first time, but several have not been previously linked to cancer. We further characterize the function of a group of hits in tumor cell invasion. Taken together these findings reveal pathways that may be critical in ccRCC tumorigenicity, and identifies novel candidate factors that could serve as targets for therapeutic intervention or diagnostic/prognostic biomarkers for patients with advanced ccRCC.


Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

  • Eline Boghaert‎ et al.
  • PLoS computational biology‎
  • 2014‎

Ductal carcinoma in situ (DCIS) is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo), but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.


Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients.

  • Maeve Mullooly‎ et al.
  • Breast cancer research : BCR‎
  • 2017‎

Postmenopausal obesity is associated with increased circulating levels of androgens and estrogens and elevated breast cancer risk. Crown-like structures (CLS; microscopic foci of dying adipocytes surrounded by macrophages) are proposed to represent sites of increased aromatization of androgens to estrogens. Accordingly, we examined relationships between CLS and sex-steroid hormones in breast adipose tissue and serum from postmenopausal breast cancer patients.


Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma.

  • Christine Mehner‎ et al.
  • Genes & cancer‎
  • 2015‎

Breast, lung, and pancreatic cancers collectively represent one third of all diagnosed tumors and are responsible for almost 40% of overall cancer mortality. Despite improvements in current treatments, efforts to develop more specific therapeutic options are warranted. Here we identify matrix metalloproteinase 3 (MMP3) as a potential target within all three of these tumor types. MMP3 has previously been shown to induce expression of Rac1b, a tumorigenic splice isoform of Rac1. In this study we find that MMP3 and Rac1b proteins are both strongly expressed by the tumor cells of all three tumor types and that expression of MMP3 protein is prognostic of poor survival in pancreatic cancer patients. We also find that MMP3 gene expression can serve as a prognostic marker for patient survival in breast and lung cancer. These results suggest an oncogenic MMP3-Rac1b signaling axis as a driver of tumor progression in three common poor prognosis tumor types, further suggesting that new therapies to target these pathways could have substantial therapeutic benefit.


Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition.

  • KangAe Lee‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Epithelial-mesenchymal transition (EMT) is a form of epithelial plasticity implicated in fibrosis and tumor metastasis. Here we show that the mechanical rigidity of the microenvironment plays a pivotal role in the promotion of EMT by controlling the subcellular localization and downstream signaling of Rac GTPases. Soft substrata, with compliances comparable to that of normal mammary tissue, are protective against EMT, whereas stiffer substrata, with compliances characteristic of breast tumors, promote EMT. Rac1b, a highly activated splice variant of Rac1 found in tumors, localizes to the plasma membrane in cells cultured on stiff substrata or in collagen-rich regions of human breast tumors. At the membrane, Rac1b forms a complex with NADPH oxidase and promotes the production of reactive oxygen species, expression of Snail, and activation of the EMT program. In contrast, soft microenvironments inhibit the membrane localization of Rac1b and subsequent redox changes. These results reveal a novel mechanotransduction pathway in the regulation of epithelial plasticity via EMT.


ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail.

  • Magdalena A Cichon‎ et al.
  • Oncotarget‎
  • 2014‎

Epithelial-mesenchymal transition (EMT) is characterized by loss of cell-cell junctions, polarity and epithelial markers, and in turn, acquisition of mesenchymal features and motility. Changes associated with this developmental process have been extensively implicated in breast cancer progression and metastasis. Matrix metalloproteinases (MMPs) have been identified as specific inducers of EMT in mammary epithelial cells. MMP-3 induces EMT associated with malignant transformation via a pathway dependent upon production of reactive oxygen species (ROS). While the process by which exposure to MMP-3 leads to induction of ROS has been extensively studied, exactly how the MMP-3-induced ROS stimulate EMT remains unknown. Here, we used profiling methods to identify MMP-3-induced transcriptional alterations in mouse mammary epithelial cells, finding common overlap with changes mediated by nuclear factor-κB (NF-κB) and found in advanced breast cancer. In cultured cells, we found that Snail, an ROS-dependent key mediator of MMP-3-induced changes, is regulated by NF-κB in response to MMP-3. More specifically, we found MMP-3 to cause binding of p65 and cRel NF-κB subunits to the Snail promoter, leading to its transcription. Our results identify a specific pathway by which MMPs induce EMT and malignant characteristics, and provide insight into potential therapeutic approaches to target MMP-associated breast cancers.


Cytotoxic T cell depletion with increasing epithelial abnormality in women with benign breast disease.

  • Sabina Adhikary‎ et al.
  • Breast cancer research and treatment‎
  • 2020‎

We quantified cytotoxic T cells in nonmalignant breast tissues from women with and without subsequent breast cancer to assess evidence of whether immunosurveillance may be suppressed prior to tumor development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: