Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,128 papers

Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules.

  • Yan-Chuang Han‎ et al.
  • Stem cells international‎
  • 2016‎

Although it is possible to generate neural stem cells (NSC) from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS) cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC) from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine.


Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: a resting-state fMRI study with Granger causality analysis.

  • Ting Wang‎ et al.
  • The journal of headache and pain‎
  • 2015‎

Most migraineurs develop cutaneous allodynia (CA) during migraine, and the underlying mechanism of CA in migraine is thought to be sensitization of the third-order trigeminovascular neurons in the posterior thalamic nuclei. This study aimed to investigate whether the ascending/descending pathway associated with the thalamus is disturbed in migraineurs with CA (MWCA) using effective connectivity analysis of resting-state functional magnetic resonance imaging.


Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development.

  • Jing Li‎ et al.
  • PloS one‎
  • 2016‎

Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development.


MicroRNAs: a novel promising therapeutic target for cerebral ischemia/reperfusion injury?

  • Xiao-Li Min‎ et al.
  • Neural regeneration research‎
  • 2015‎

To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the microRNA (miRNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using miRNA microarrays and bioinformatic tools to systematically analyze Gene Ontology (GO) function classifications, as well as the signaling pathways of genes targeted by these differentially expressed miRNAs. Our results show significantly changed miRNA expression profiles in the reperfusion period after focal cerebral ischemia, with a total of 15 miRNAs up-regulated and 44 miRNAs down-regulated. Target genes of these differentially expressed miRNAs were mainly involved in metabolic and cellular processes, which were identified as hub nodes of a miRNA-GO-network. The most correlated pathways included D-glutamine and D-glutamate metabolism, the renin-angiotensin system, peroxisomes, the PPAR signaling pathway, SNARE interactions in vesicular transport, and the calcium signaling pathway. Our study suggests that miRNAs play an important role in the pathological process of cerebral ischemia/reperfusion injury. Understanding miRNA expression and function may shed light on the molecular mechanism of cerebral ischemia/reperfusion injury.


Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves brain ischemia-induced pulmonary injury in rats associated to TNF-α expression.

  • Qin-qin He‎ et al.
  • Behavioral and brain functions : BBF‎
  • 2016‎

Bone marrow mesenchymal stem cell (BMSCs)-based therapy seems to be a promising treatment for acute lung injury, but the therapeutic effects of BMSCs transplantation on acute lung injury induced by brain ischemia and the mechanisms have not been totally elucidated. This study explores the effects of transplantation of BMSCs on acute lung injury induced by focal cerebral ischemia and investigates the underlying mechanism.


Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.).

  • Jia Liu‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Changes in the rapeseed branch angle alter plant architecture, allowing more efficient light capture as planting density increases. In this study, a natural population of rapeseed was grown in three environments and evaluated for branch angle trait to characterize their phenotypic patterns and genotype with a 60K Brassica Infinium SNP array. Significant phenotypic variation was observed from 20 to 70°. As a result, 25 significant quantitative trait loci (QTL) associated with branch angle were identified on chromosomes A2, A3, A7, C3, C5, and C7 by the MLM model in TASSEL 4.0. Orthologs of the functional candidate genes involved in branch angle were identified. Among the key QTL, the peak SNPs were close to the key orthologous genes BnaA.Lazy1 and BnaC.Lazy1 on A3 and C3 homologous genome blocks. With the exception of Lazy (LA) orthologous genes, SQUMOSA PROMOTER BINDING PROTEIN LIKE 14 (SPL14) and an auxin-responsive GRETCHEN HAGEN 3 (GH3) genes from Arabidopsis thaliana were identified close to two clusters of SNPs on the A7 and C7 chromosomes. These findings on multiple novel loci and candidate genes of branch angle will be useful for further understanding and genetic improvement of plant architecture in rapeseed.


Trauma-specific Grey Matter Alterations in PTSD.

  • Linghui Meng‎ et al.
  • Scientific reports‎
  • 2016‎

Previous studies have demonstrated that patients with posttraumatic stress disorder (PTSD) caused by different types of trauma may show divergence in epidemiology, clinical manifestation and treatment outcome. However, it is still unclear whether this divergence has neuroanatomic correlates in PTSD brains. To elucidate the general and trauma-specific cortical morphometric alterations, we performed a meta-analysis of grey matter (GM) changes in PTSD (N = 246) with different traumas and trauma-exposed controls (TECs, N = 347) using anisotropic effect-size signed differential mapping and its subgroup analysis. Our results revealed general GM reduction (GMR) foci in the prefrontal-limbic-striatal system of PTSD brains when compared with those of TECs. Notably, the GMR patterns were trauma-specific. For PTSD by single-incident traumas, GMR foci were found in bilateral medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), insula, striatum, left hippocampus and amygdala; and for PTSD by prolonged traumas in the left insula, striatum, amygdala and middle temporal gyrus. Moreover, Clinician-Administered PTSD Scale scores were found to be negatively associated with the GM changes in bilateral ACC and mPFC. Our study indicates that the GMR patterns of PTSD are associated with specific traumas, suggesting a stratified diagnosis and treatment for PTSD patients.


Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy.

  • Shoushui Yu‎ et al.
  • Neuroscience letters‎
  • 2016‎

Mitophagy plays an important role in mitochondrial quality control and cell survival during the process of ischemia/reperfusion (I/R) injury. Mitochondrial calcium uniporter (MCU) is the most important channel responsible for Ca(2+) influx into mitochondria and Ca(2+) signal plays a potential role in modulating mitophagy. However, the effect of MCU on mitophagy during the process of I/R injury remains unknown. This study constructed an in vitro I/R model by subjecting oxygen and glucose deprivation/reperfusion (OGD/RP) model to SH-SY5Y cells to mimic the cerebral I/R injury and aimed to explore the exact effect of MCU on I/R induced mitophagy. The results showed that OGD/RP induced autophagy and mitophagy in SH-SY5Y cells. Ru360, the inhibitor of MCU, improved mitochondrial morphology and fuctional stability as well as cell viability, significantly reduced OGD/RP induced mitophagy as evidenced by the decrease in Beclin-1 and the increase in Tom20 and P62 expression. Whereas spermine, the agonist of MCU, had no significant impact on the expression of those mitophagy related proteins compared with OGD/RP group. This study indicates that inhibition of MCU can inhibit excessive mitophagy and protect the neurocytes from I/R injury.


MiR-495 inhibits esophageal squamous cell carcinoma progression by targeting Akt1.

  • Yu Mao‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs are involved in tumor initiation and progression by regulating oncogenes and tumor suppressor genes. Here we found that miR-495 are lower in clinical ESCC tissues than in adjacent non-tumor tissues. Moreover, the lower miR-495 expression correlated with increased lymph node metastasis (LNM), invasion and TNM stage. miR-495 overexpression predicted a favorable outcome in ESCC patients. miR-495 targeted a site in the 3'-UTR of Akt1, and miR-495 levels correlated inversely with Akt1 protein levels in ESCC tissue samples. Overexpression of miR-495 suppressed cell proliferation, blocked G1/S phase transition, and decreased migration and invasion by two ESCC cell lines in vitro and in vivo. Restoration of Akt1 protein levels in miR-495-overexpressing ESCC cells attenuated the inhibitory effects of miR-495. In addition, miR-495 suppressed cell cycle transition and the EMT signaling pathway through targeting Akt1, thereby inhibiting ESCC cell proliferation, migration, and invasion. Our results suggest that miR-495 may act as a tumor suppressor by targeting Akt1 in ESCC.


Therapeutic Potential of HGF-Expressing Human Umbilical Cord Mesenchymal Stem Cells in Mice with Acute Liver Failure.

  • Yunxia Tang‎ et al.
  • International journal of hepatology‎
  • 2016‎

Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are particularly attractive cells for cellular and gene therapy in acute liver failure (ALF). However, the efficacy of this cell therapy in animal studies needs to be significantly improved before it can be translated into clinics. In this study, we investigated the therapeutic potential of UCMSCs that overexpress hepatocyte growth factor (HGF) in an acetaminophen-induced acute liver failure mouse model. We found that the HGF-UCMSC cell therapy protected animals from acute liver failure by reducing liver damage and prolonging animal survival. The therapeutic effect of HGF-UCMSCs was associated with the increment in serum glutathione (GSH) and hepatic enzymes that maintain redox homeostasis, including γ-glutamylcysteine synthetase (γ-GCS), superoxide dismutase (SOD), and catalase (CAT). Immunohistochemical staining confirmed that HGF-UCMSCs were mobilized to the injured areas of the liver. Additionally, HGF-UCMSCs modulated apoptosis by upregulating the antiapoptotic Bcl2 and downregulating proapoptotic genes, including Bax and TNFα. Taken together, these data suggest that ectopic expression of HGF in UCMSCs protects animals from acetaminophen-induced acute liver failure through antiapoptosis and antioxidation mechanisms.


A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds.

  • Jiandong Huang‎ et al.
  • PeerJ‎
  • 2016‎

Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds) and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.


The development of drug resistance mutations K103N Y181C and G190A in long term Nevirapine-containing antiviral therapy.

  • Yuncong Wang‎ et al.
  • AIDS research and therapy‎
  • 2014‎

We built a cohort study of HIV patients taking long-term first-line Antiretroviral Therapy in 2003. In this assay, we focused on the development of primary drug resistance mutations against Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI), K103N, Y181C and G190A.


Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition.

  • Haiying Tang‎ et al.
  • The Journal of surgical research‎
  • 2015‎

Epithelial to mesenchymal transition (EMT) of alveolar epithelial cells occurs in lung fibrotic diseases. Tanshinone IIA (Tan IIA) has been reported to exert anti-inflammatory effects in pulmonary fibrosis. Nonetheless, whether Tan IIA affects lung fibrosis-related EMT remains unknown and requires for further investigations.


Stimulation of Airway and Intestinal Mucosal Secretion by Natural Coumarin CFTR Activators.

  • Hong Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2011‎

Mutations of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) cause lethal hereditary disease CF that involves extensive destruction and dysfunction of serous epithelium. Possible pharmacological therapy includes correction of defective intracellular processing and abnormal channel gating. In a previous study, we identified five natural coumarin potentiators of ΔF508-CFTR including osthole, imperatorin, isopsoralen, praeruptorin A, and scoparone. The present study was designed to determine the activity of these coumarine compounds on CFTR activity in animal tissues as a primary evaluation of their therapeutic potential. In the present study, we analyzed the affinity of these coumarin potentiators in activating wild-type CFTR and found that they are all potent activators. Osthole showed the highest affinity with K(d) values <50 nmol/L as determined by Ussing chamber short-circuit current assay. Stimulation of rat colonic mucosal secretion by osthole was tested by the Ussing chamber short-circuit current assay. Osthole reached maximal activation of colonic Cl(-) secretion at 5 μmol/L. Stimulation of mouse tracheal mucosal secretion was analyzed by optical measurement of single gland secretion. Fluid secretion rate of tracheal single submucosal gland stimulated by osthole at 10 μmol/L was three-fold more rapid than that in negative control. In both cases the stimulated secretions were fully abolished by CFTR(inh)-172. In conclusion, the effective stimulation of Cl(-) and fluid secretion in colonic and tracheal mucosa by osthole suggested the therapeutic potential of natural coumarin compounds for the treatment of CF and other CFTR-related diseases.


MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16.

  • Jia Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration via increasing microRNA-155 (miR-155) levels, and investigate the underlying mechanism. Human cardiomyocyte progenitor cells (hCMPCs) were transfected with pre-miR-155, anti-miR-155 or control-miR (ctrl-miR), followed by scratch- and transwell-assays. These functional assays displayed that miR-155 over-expression efficiently inhibited cell migration by 38 ± 3.6% and 59 ± 3.7% respectively. Conditioned medium from miR-155 transfected cells was collected and zymography analysis showed a significant decrease in MMP-2 and MMP-9 activities. The predicted 3'-UTR of MMP-16, an activator of MMP-2 and -9, was cloned into the pMIR-REPORT vector and luciferase assays were performed. Introduction of miR-155 significantly reduced luciferase activity which could be abolished by cotransfection with anti-miR-155 or target site mutagenesis. By using MMP-16 siRNA to reduce MMP-16 levels or by using an MMP-16 blocking antibody, hCMPC migration could be blocked as well. By directly targeting MMP-16, miR-155 efficiently inhibits cell migration via a reduction in MMP-2 and -9 activities. Our study shows that miR-155 might be used to improve local retention of hCMPCs after intramyocardial delivery.


TLR ligand induced IL-6 counter-regulates the anti-viral CD8(+) T cell response during an acute retrovirus infection.

  • Weimin Wu‎ et al.
  • Scientific reports‎
  • 2015‎

We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8(+) T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8(+) T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8(+) T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8(+) T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8(+) T cells in vitro. This effect was mediated by a direct stimulation of CD8(+) T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8(+) T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections.


Study of novel coating strategy for coronary stents: simutaneous coating of VEGF and anti- CD34 antibody.

  • Chun-Li Song‎ et al.
  • Revista brasileira de cirurgia cardiovascular : orgao oficial da Sociedade Brasileira de Cirurgia Cardiovascular‎
  • 2015‎

Intravascular coronary stenting has been used in the treatment of coronary artery disease (CAD), with a major limitation of in-stent restenosis (ISR). The 316 stainless steel has been widely used for coronary stents. In this study, we developed a novel coating method to reduce ISR by simultaneously coating vascular endothelial growth factor (VEGF) and anti-CD34 antibody on 316L stainless steel.


The eQTL-missense polymorphisms of APOBEC3H are associated with lung cancer risk in a Han Chinese population.

  • Meng Zhu‎ et al.
  • Scientific reports‎
  • 2015‎

APOBEC (Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) enzymes may involve in mutagenic processes in multiple cancer types, including lung cancer. APOBEC family of cytidine deaminases induces base substitutions with a stringent TCW motif, which is widespread in multiple human cancers. We hypothesized that common missense variants in coding regions of APOBEC genes might damage the structure of proteins and modify lung cancer risk. To test this hypothesis, we systematically screened predicted deleterious polymorphisms in the exon regions of 10 APOBEC core genes (APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, APOBEC3H, and APOBEC4) and evaluated them with a case-control study including 1200 cases and 1253 controls. We found that the T allele of rs139293 in exon 2 of APOBEC3H was significantly associated with decreased risk of lung cancer (odds ratio = 0.76, 95% confidence interval: 0.63-0.91). Similar inverse association of this variant was observed in subgroups. Further study showed that the T allele of rs139293 was associated with the altered expression of APOBEC3H and APOBEC3C and that the two genes were co-expressed in both tumor and adjacent normal tissues. These results indicate that genetic variants in APOBEC3H may contribute to lung cancer susceptibility in Chinese population.


Potentially functional polymorphisms in PAK1 are associated with risk of lung cancer in a Chinese population.

  • Mingfeng Zheng‎ et al.
  • Cancer medicine‎
  • 2015‎

P21-activated kinase 1(PAK1) plays an important role in the regulation of cell morphogenesis, motility, mitosis, and angiogenesis and has been implicated with tumorigenesis and tumor progression. We hypothesized that functional polymorphisms in PAK1 gene may modify the risk of lung cancer. We screened four potentially functional polymorphisms (rs2154754, rs3015993, rs7109645, and rs2844337) in PAK1 gene and evaluated the association between the genetic variants and lung cancer risk in a case-control study including 1341 lung cancer cases and 1982 cancer-free controls in a Chinese population. We found that variant allele of rs2154754 was significantly associated with a decreased risk of lung cancer (OR = 0.85, 95% CI: 0.77-0.95, P = 0.004), meanwhile the result of rs3015993 was marginal (OR = 0.90, 95%CI: 0.81-1.00, P = 0.044). After multiple comparisons, rs2154754 was still significantly associated with the lung cancer risk (P < 0.0125 for Bonferroni correction). We also detected a significant interaction between rs2154754 genotypes and smoking levels on lung cancer risk (P = 0.042). Combined analysis of these two polymorphisms showed a significant allele-dosage association between the number of protective alleles and reduced risk of lung cancer (Ptrend = 0.008). These findings indicate that genetic variants in PAK1 gene may contribute to susceptibility to lung cancer in the Chinese population.


Myxoma virus expressing a fusion protein of interleukin-15 (IL15) and IL15 receptor alpha has enhanced antitumor activity.

  • Vesna Tosic‎ et al.
  • PloS one‎
  • 2014‎

Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15) is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα) greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr), which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13) cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY) cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr). Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: