Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Quantitative histomorphometry of capillary microstructure in deep white matter.

  • Meghdoot Mozumder‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

White matter lesions represent a major risk factor for dementia in elderly people. Magnetic Resonance Imaging (MRI) studies have demonstrated cerebral blood flow reduction in age-related white matter lesions, indicating that vascular alterations are involved in developing white matter lesions. Hypoperfusion and changes in capillary morphology are generally linked to dementia. However, a quantitative study describing these microvascular alterations in white matter lesions is missing in the literature; most previous microvascular studies being on the cortex. The aim of this work is to identify and quantify capillary microstructural changes involved in the appearance of deep subcortical lesions (DSCL). We characterize the distribution of capillary diameter, thickness, and density in the deep white matter in a population of 75 elderly subjects, stratified into three equal groups according to DSCL: Control (subject without DSCL), Lesion (sample presenting DSCL), and Normal Appearing White Matter (NAWM, the subject presented DSCL but not at the sampled tissue location). Tissue samples were selected from the Cognitive Function and Aging Study (CFAS), a cohort representative of an aging population, from which immunohistochemically-labeled histological images were acquired. To accurately estimate capillary diameters and thicknesses from the 2D histological images, we also introduce a novel semi-automatic method robust to non-perpendicular incidence angle of capillaries into the imaging plane, and to non-circular deformations of capillary cross sections. Subjects with DSCL presented a significant increase in capillary wall thickness, a decrease in the diameter intra-subject variability (but not in the mean), and a decrease in capillary density. No significant difference was observed between controls and NAWM. Both capillary wall thickening and reduction in capillary density contribute to the reduction of cerebral blood flow previously reported for white matter lesions. The obtained distributions provide reliable statistics of capillary microstructure useful to inform the modeling of human cerebral blood flow, for instance to define microcirculation models for their estimation from MRI or to perform realistic cerebral blood flow simulations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: