Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Identification and characterization of mutations in the SARS-CoV-2 RNA-dependent RNA polymerase as a promising antiviral therapeutic target.

  • Niti Yashvardhini‎ et al.
  • Archives of microbiology‎
  • 2021‎

The causative agent of COVID-19 is a novel betacoronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV-2), which has emerged as a pandemic of global concern. Considering its rapid transmission, WHO has declared public health emergency on 11th March 2020 worldwide. SARS-CoV-2 is a genetically diverse positive sense RNA virus that typically exhibit high rates of mutation than DNA viruses. Higher rates of mutation bring higher genomic variability which may lead to viral evolution and enabling viruses to evade the pre-existing immunity of host and quickly acquire drug resistance properties. The objective of our study was to compare the SARS-CoV-2 RdRp sequences of Indian SARS-CoV-2 isolates with those of Wuhan type virus. A total of 384 point mutations were detected from 488 sequence of the RdRp protein of Indian SARS-CoV-2 genome, out of which seven were used for subsequent study. Furthermore, prediction of secondary structure, protein modeling and its dynamics were performed which revealed that seven mutations (R118C, T148I, Y149C, E802A, Q822H, V880I and D893Y) significantly altered the stability and flexibility of RdRp protein. Present study was therefore, undertaken to analyze the variations occurring in RdRp due to multiple mutations leading to the alterations in the structure and function of RNA-dependent RNA polymerase which is essential for the replication /transcription of this virus and hence can be utilized as a promising therapeutic target to curb SARS-CoV-2 infections.


Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity.

  • Raghuvar Dronamraju‎ et al.
  • Nucleic acids research‎
  • 2018‎

Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.


MYB Transcription Factor Family in Pearl Millet: Genome-Wide Identification, Evolutionary Progression and Expression Analysis under Abiotic Stress and Phytohormone Treatments.

  • Jeky Chanwala‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Transcription factors (TFs) are the regulatory proteins that act as molecular switches in controlling stress-responsive gene expression. Among them, the MYB transcription factor family is one of the largest TF family in plants, playing a significant role in plant growth, development, phytohormone signaling and stress-responsive processes. Pearl millet (Pennisetum glaucum L.) is one of the most important C4 crop plants of the arid and semi-arid regions of Africa and Southeast Asia for sustaining food and fodder production. To explore the evolutionary mechanism and functional diversity of the MYB family in pearl millet, we conducted a comprehensive genome-wide survey and identified 279 MYB TFs (PgMYB) in pearl millet, distributed unevenly across seven chromosomes of pearl millet. A phylogenetic analysis of the identified PgMYBs classified them into 18 subgroups, and members of the same group showed a similar gene structure and conserved motif/s pattern. Further, duplication events were identified in pearl millet that indicated towards evolutionary progression and expansion of the MYB family. Transcriptome data and relative expression analysis by qRT-PCR identified differentially expressed candidate PgMYBs (PgMYB2, PgMYB9, PgMYB88 and PgMYB151) under dehydration, salinity, heat stress and phytohormone (ABA, SA and MeJA) treatment. Taken together, this study provides valuable information for a prospective functional characterization of the MYB family members of pearl millet and their application in the genetic improvement of crop plants.


Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System.

  • Michael J Chen‎ et al.
  • Stem cell reports‎
  • 2020‎

Studies of hematopoietic stem cell (HSC) development from pre-HSC-producing hemogenic endothelial cells (HECs) are hampered by the rarity of these cells and the presence of other cell types with overlapping marker expression profiles. We generated a Tg(Runx1-mKO2; Ly6a-GFP) dual reporter mouse to visualize hematopoietic commitment and study pre-HSC emergence and maturation. Runx1-mKO2 marked all intra-arterial HECs and hematopoietic cluster cells (HCCs), including pre-HSCs, myeloid- and lymphoid progenitors, and HSCs themselves. However, HSC and lymphoid potential were almost exclusively found in reporter double-positive (DP) cells. Robust HSC activity was first detected in DP cells of the placenta, reflecting the importance of this niche for (pre-)HSC maturation and expansion before the fetal liver stage. A time course analysis by single-cell RNA sequencing revealed that as pre-HSCs mature into fetal liver stage HSCs, they show signs of interferon exposure, exhibit signatures of multi-lineage differentiation gene expression, and develop a prolonged cell cycle reminiscent of quiescent adult HSCs.


Reconstruction of complex single-cell trajectories using CellRouter.

  • Edroaldo Lummertz da Rocha‎ et al.
  • Nature communications‎
  • 2018‎

A better understanding of the cell-fate transitions that occur in complex cellular ecosystems in normal development and disease could inform cell engineering efforts and lead to improved therapies. However, a major challenge is to simultaneously identify new cell states, and their transitions, to elucidate the gene expression dynamics governing cell-type diversification. Here, we present CellRouter, a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single-cell omics data. We demonstrate its versatility by applying CellRouter to single-cell RNA sequencing data sets to reconstruct cell-state transition trajectories during hematopoietic stem and progenitor cell (HSPC) differentiation to the erythroid, myeloid and lymphoid lineages, as well as during re-specification of cell identity by cellular reprogramming of monocytes and B-cells to HSPCs. CellRouter opens previously undescribed paths for in-depth characterization of complex cellular ecosystems and establishment of enhanced cell engineering approaches.


The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia.

  • R Grant Rowe‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Leukemia phenotypes vary with age of onset. Delineating mechanisms of age specificity in leukemia could improve disease models and uncover new therapeutic approaches. Here, we used heterochronic transplantation of leukemia driven by MLL/KMT2A translocations to investigate the contribution of the age of the hematopoietic microenvironment to age-specific leukemia phenotypes. When driven by MLL-AF9, leukemia cells in the adult microenvironment sustained a myeloid phenotype, whereas the neonatal microenvironment supported genesis of mixed early B cell/myeloid leukemia. In MLL-ENL leukemia, the neonatal microenvironment potentiated B-lymphoid differentiation compared with the adult. Ccl5 elaborated from adult marrow stroma inhibited B-lymphoid differentiation of leukemia cells, illuminating a mechanism of age-specific lineage commitment. Our study illustrates the contribution of the developmental stage of the hematopoietic microenvironment in defining the age specificity of leukemia.


Immunoinformatics Identification of B- and T-Cell Epitopes in the RNA-Dependent RNA Polymerase of SARS-CoV-2.

  • Niti Yashvardhini‎ et al.
  • The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale‎
  • 2021‎

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) is a newly emerged beta coronavirus and etiolating agent of COVID-19. Considering the unprecedented increasing number of COVID-19 cases, the World Health Organization declared a public health emergency internationally on 11th March 2020. However, existing drugs are insufficient in dealing with this contagious virus infection; therefore, a vaccine is exigent to curb this pandemic disease. In the present study, B- and T-cell immune epitopes were identified for RdRp (RNA-dependent RNA polymerase) protein using immunoinformatic techniques, which is proved to be a rapid and efficient method to explore the candidate peptide vaccine. Subsequently, antigenicity and interactions with HLA (human leukocyte antigen) alleles were estimated. Further, physicochemical properties, allergenicity, toxicity, and stability of RdRp protein were evaluated to demonstrate the specificity of the epitope candidates. Interestingly, we identified a total of 36 B-cell and 16 T-cell epitopes using epitopes predictive tools. Among the predicted epitopes, 26 B-cell and 9 T-cell epitopes showed non-allergenic, non-toxic, and highly antigenic properties. Altogether, our study revealed that RdRp of SARS-CoV-2 (an epitope-based peptide fragment) can be a potentially good candidate for the development of a vaccine against SARS-CoV-2.


Haematopoietic stem and progenitor cells from human pluripotent stem cells.

  • Ryohichi Sugimura‎ et al.
  • Nature‎
  • 2017‎

A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: