Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

C-terminal amino acids are essential for human heat shock protein 70 dimerization.

  • Guillaume Marcion‎ et al.
  • Cell stress & chaperones‎
  • 2015‎

The human inducible heat shock protein 70 (hHsp70), which is involved in several major pathologies, including neurodegenerative disorders and cancer, is a key molecular chaperone and contributes to the proper protein folding and maintenance of a large number of protein structures. Despite its role in disease, the current structural knowledge of hHsp70 is almost exclusively based on its Escherichia coli homolog, DnaK, even though these two proteins only share ~50 % amino acid identity. For the first time, we describe a complete heterologous production and purification strategy that allowed us to obtain a large amount of soluble, full-length, and non-tagged hHsp70. The protein displayed both an ATPase and a refolding activity when combined to the human Hsp40. Multi-angle light scattering and bio-layer interferometry analyses demonstrated the ability of hHsp70 to homodimerize. The role of the C-terminal part of hHsp70 was identified and confirmed by a study of a truncated version of hHsp70 that could neither dimerize nor present refolding activity.


In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution.

  • Ehsan Ranaei-Siadat‎ et al.
  • RNA (New York, N.Y.)‎
  • 2014‎

TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg(2+) drives compaction of the RNA structure and that, in the absence of Mg(2+), SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule.


Structure/Function Analysis of Protein-Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly.

  • Marc Quinternet‎ et al.
  • Journal of molecular biology‎
  • 2015‎

In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular β-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.


Disulfide bond formation and cysteine exclusion in gram-positive bacteria.

  • Robert Daniels‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Most secretion pathways in bacteria and eukaryotic cells are challenged by the requirement for their substrate proteins to mature after they traverse a membrane barrier and enter a reactive oxidizing environment. For Gram-positive bacteria, the mechanisms that protect their exported proteins from misoxidation during their post-translocation maturation are poorly understood. To address this, we separated numerous bacterial species according to their tolerance for oxygen and divided their proteomes based on the predicted subcellular localization of their proteins. We then applied a previously established computational approach that utilizes cysteine incorporation patterns in proteins as an indicator of enzymatic systems that may exist in each species. The Sec-dependent exported proteins from aerobic Gram-positive Actinobacteria were found to encode cysteines in an even-biased pattern indicative of a functional disulfide bond formation system. In contrast, aerobic Gram-positive Firmicutes favor the exclusion of cysteines from both their cytoplasmic proteins and their substantially longer exported proteins. Supporting these findings, we show that Firmicutes, but not Actinobacteria, tolerate growth in reductant. We further demonstrate that the actinobacterium Corynebacterium glutamicum possesses disulfide-bonded proteins and two dimeric Dsb-like enzymes that can efficiently catalyze the formation of disulfide bonds. Our results suggest that cysteine exclusion is an important adaptive strategy against the challenges presented by oxidative environments.


Nasal mucus glutathione transferase activity and impact on olfactory perception and neonatal behavior.

  • Aline Robert-Hazotte‎ et al.
  • Scientific reports‎
  • 2019‎

In olfaction, to preserve the sensitivity of the response, the bioavailability of odor molecules is under the control of odorant-metabolizing enzymes (OMEs) expressed in the olfactory neuroepithelium. Although this enzymatic regulation has been shown to be involved in olfactory receptor activation and perceptual responses, it remains widely underestimated in vertebrates. In particular, the possible activity of OMEs in the nasal mucus, i.e. the aqueous layer that lined the nasal epithelium and forms the interface for airborne odorants to reach the olfactory sensory neurons, is poorly known. Here, we used the well-described model of the mammary pheromone (MP) and behavioral response in rabbit neonates to challenge the function of nasal mucus metabolism in an unprecedented way. First, we showed, in the olfactory epithelium, a rapid glutathione transferase activity toward the MP by ex vivo real-time mass spectrometry (PTR-MS) which supported an activity in the closest vicinity of both the odorants and olfactory receptors. Indeed and second, both the presence and activity of glutathione transferases were evidenced in the nasal mucus of neonates using proteomic and HPLC analysis respectively. Finally, we strikingly demonstrated that the deregulation of the MP metabolism by in vivo mucus washing modulates the newborn rabbit behavioral responsiveness to the MP. This is a step forward in the demonstration of the critical function of OMEs especially in the mucus, which is at the nasal front line of interaction with odorants and potentially subjected to physiopathological changes.


Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling.

  • Christophe J Queval‎ et al.
  • Cell reports‎
  • 2017‎

Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS) protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH), which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive.


Biophysical and functional characterization of the N-terminal domain of the cat T1R1 umami taste receptor expressed in Escherichia coli.

  • Christine Belloir‎ et al.
  • PloS one‎
  • 2017‎

Umami taste perception is mediated by the heterodimeric G-protein coupled receptors (GPCRs), formed by the assembly of T1R1 and T1R3 subunits. T1R1 and T1R3 subunits are class C GPCRs whose members share common structural homologies including a long N-terminal domain (NTD) linked to a seven transmembrane domain by a short cysteine-rich region. The NTD of the T1R1 subunit contains the primary binding site for umami stimuli, such as L-glutamate (L-Glu) for humans. Inosine-5'-monophosphate (IMP) binds at a location close to the opening of the T1R1-NTD "flytrap", thus creating the observed synergistic response between L-Glu and IMP. T1R1/T1R3 binding studies have revealed species-dependent differences. While human T1R1/T1R3 is activated specifically by L-Glu, the T1R1/T1R3 in other species is a broadly tuned receptor, sensitive to a range of L-amino acids. Because domestic cats are obligate carnivores, they display strong preferences for some specific amino acids. To better understand the structural basis of umami stimuli recognition by non-human taste receptors, we measured the binding of selected amino acids to cat T1R1/T1R3 (cT1R1/cT1R3) umami taste receptor. For this purpose, we expressed cT1R1-NTD in bacteria as inclusion bodies. After purification, refolding of the protein was achieved. Circular dichroism spectroscopic studies revealed that cT1R1-NTD was well renatured with evidence of secondary structures. Using size-exclusion chromatography coupled to light scattering, we found that the cT1R1-NTD behaves as a monomer. Ligand binding quantified by intrinsic tryptophan fluorescence showed that cT1R1-NTD is capable of binding L-amino acids with Kd values in the micromolar range. We demonstrated that IMP potentiates L-amino acid binding onto renatured cT1R1-NTD. Interestingly, our results revealed that IMP binds the extracellular domain in the absence of L-amino acids. Thus, this study demonstrates that the feasibility to produce milligram quantities of cT1R1-NTD for functional and structural studies.


Biophysical and functional characterization of the human TAS1R2 sweet taste receptor overexpressed in a HEK293S inducible cell line.

  • Christine Belloir‎ et al.
  • Scientific reports‎
  • 2021‎

Sweet taste perception is mediated by a heterodimeric receptor formed by the assembly of the TAS1R2 and TAS1R3 subunits. TAS1R2 and TAS1R3 are class C G-protein-coupled receptors whose members share a common topology, including a large extracellular N-terminal domain (NTD) linked to a seven transmembrane domain (TMD) by a cysteine-rich domain. TAS1R2-NTD contains the primary binding site for sweet compounds, including natural sugars and high-potency sweeteners, whereas the TAS1R2-TMD has been shown to bind a limited number of sweet tasting compounds. To understand the molecular mechanisms governing receptor-ligand interactions, we overexpressed the human TAS1R2 (hTAS1R2) in a stable tetracycline-inducible HEK293S cell line and purified the detergent-solubilized receptor. Circular dichroism spectroscopic studies revealed that hTAS1R2 was properly folded with evidence of secondary structures. Using size exclusion chromatography coupled to light scattering, we found that the hTAS1R2 subunit is a dimer. Ligand binding properties were quantified by intrinsic tryptophan fluorescence. Due to technical limitations, natural sugars have not been tested. However, we showed that hTAS1R2 is capable of binding high potency sweeteners with Kd values that are in agreement with physiological detection. This study offers a new experimental strategy to identify new sweeteners or taste modulators that act on the hTAS1R2 and is a prerequisite for structural query and biophysical studies.


Development of New Models of Oral Mucosa to Investigate the Impact of the Structure of Transmembrane Mucin-1 on the Mucosal Pellicle Formation and Its Physicochemical Properties.

  • Clément Nivet‎ et al.
  • Biomedicines‎
  • 2024‎

The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.


Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription.

  • Isabel Paiva‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Caffeine is the most widely consumed psychoactive substance in the world. Strikingly, the molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus at the epigenomic, proteomic, and metabolomic levels. Caffeine lowered metabolism-related processes (e.g., at the level of metabolomics and gene expression) in bulk tissue, while it induced neuron-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through fine-tuning of metabolic genes, while boosting the salience of information processing during learning in neuronal circuits.


A Flexible and Original Architecture of Two Unrelated Zinc Fingers Underlies the Role of the Multitask P1 in RYMV Spread.

  • Vianney Poignavent‎ et al.
  • Journal of molecular biology‎
  • 2022‎

Viruses of the sobemovirus genus are plant viruses, most of which generate very important agricultural and financial losses. Among them, the rice yellow mottle virus (RYMV) is one of the most damaging pathogens devastating rice fields in Africa. RYMV infectivity and propagation rely on its protein P1, identified as a key movement and potential long-distance RNA silencing suppressor. Here we describe P1's complete 3D structure and dynamics obtained by an integrative approach combining X-Ray crystallography and NMR spectroscopy. We show that P1 is organized in two semi-independent and topologically unrelated domains, each harboring an original zinc finger. The two domains exhibit different affinities for zinc and sensitivities to oxidoreduction conditions, making the C-terminal P1 region a potential labile sensor of the plant redox status. An additional level of regulation resides on the capacity of P1 to oligomerize through its N-terminal domain. Coupling P1 structure information with site-directed mutagenesis and plant functional assays, we identified key residues in each zinc domain essential for infectivity and spread in rice tissues. Altogether, our results provide the first complete structure of a sobemoviral P1 movement protein and highlight structural and dynamical properties that may serve RYMV functions to infect and invade its host plant.


The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity.

  • Benoît Bragantini‎ et al.
  • Nature communications‎
  • 2021‎

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity.


Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages.

  • Tarik Hadi‎ et al.
  • JCI insight‎
  • 2020‎

In this work, we have explored natural unmodified low- and high-density lipoproteins (LDL and HDL, respectively) as selective delivery vectors in colorectal cancer therapy. We show in vitro in cultured cells and in vivo (NanoSPECT/CT) in the CT-26 mice colorectal cancer model that LDLs are mainly taken up by cancer cells, while HDLs are preferentially taken up by macrophages. We loaded LDLs with cisplatin and HDLs with the heat shock protein-70 inhibitor AC1LINNC, turning them into a pair of "Trojan horses" delivering drugs selectively to their target cells as demonstrated in vitro in human colorectal cancer cells and macrophages, and in vivo. Coupling of the drugs to lipoproteins and stability was assessed by mass spectometry and raman spectrometry analysis. Cisplatin vectorized in LDLs led to better tumor growth suppression with strongly reduced adverse effects such as renal or liver toxicity. AC1LINNC vectorized into HDLs induced a strong oxidative burst in macrophages and innate anticancer immune response. Cumulative antitumor effect was observed for both drug-loaded lipoproteins. Altogether, our data show that lipoproteins from patient blood can be used as natural nanocarriers allowing cell-specific targeting, paving the way toward more efficient, safer, and personalized use of chemotherapeutic and immunotherapeutic drugs in cancer.


2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations.

  • Carole Trzaska‎ et al.
  • Nature communications‎
  • 2020‎

Nonsense mutations cause about 10% of genetic disease cases, and no treatments are available. Nonsense mutations can be corrected by molecules with nonsense mutation readthrough activity. An extract of the mushroom Lepista inversa has recently shown high-efficiency correction of UGA and UAA nonsense mutations. One active constituent of this extract is 2,6-diaminopurine (DAP). In Calu-6 cancer cells, in which TP53 gene has a UGA nonsense mutation, DAP treatment increases p53 level. It also decreases the growth of tumors arising from Calu-6 cells injected into immunodeficient nude mice. DAP acts by interfering with the activity of a tRNA-specific 2'-O-methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNATrp. Low-toxicity and high-efficiency UGA nonsense mutation correction make DAP a good candidate for the development of treatments for genetic diseases caused by nonsense mutations.


Data on the expression of GSTE1 and GSTE7 in Drosophila chemosensory organs after isothiocyanate exposure.

  • Stéphane Fraichard‎ et al.
  • Data in brief‎
  • 2018‎

The data presented in this article are related to the research article entitled "Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification." (Gonzalez et al., 2018) [1]. This article includes the expression level of Drosophila melanogaster GSTE1 and GSTE7 in chemosensory male tissues and the expression level of the mRNAs coding for the same enzymes after a PEITC exposure in food.


Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line.

  • Christine Belloir‎ et al.
  • Protein expression and purification‎
  • 2017‎

Olfactory receptors (ORs) play a crucial role in detecting the odorant molecules present in the surrounding environment. These receptors, which belong to class A G-protein-coupled receptors, constitute the largest transmembrane protein family in the human genome. Functional studies showed that the OR family includes members that are able to respond to a large set of odorants and members that are activated by a relatively small number of related odorants. To understand the molecular mechanisms that govern the receptor-ligand interactions, we overexpressed the human OR hOR1A1 in a stable tetracycline-inducible HEK293S cell line. This receptor was engineered by inserting a C-terminal rho1D4 epitope tag and an N-terminal FLAG epitope tag to allow its purification and detection. The functional activity of the FLAG-rho1D4-tagged hOR1A1 in heterologous HEK293S cells was analysed using a real-time cAMP assay. A two-step purification using monoclonal anti-FLAG immunoaffinity purification and gel filtration was then employed to purify the detergent-solubilized receptor. A size exclusion chromatography-multi-angle light scattering analysis showed the presence of monomeric and dimeric forms of FLAG-rho1D4-tagged hOR1A1. The amounts of the monomeric and dimeric forms purified from sixty T175 flasks were approximately 1.6 and 1.1 mg, respectively. The circular dichroism analysis showed that the purified receptor was properly folded. Ligand binding was quantified using an intrinsic tryptophan fluorescence assay and revealed that the detergent-solubilized FLAG-rho1D4-tagged hOR1A1 bound its cognate odorant, dihydrojasmone, with an affinity in the micromolar range. These results pave the way for future crystallographic and NMR studies.


The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection.

  • Hailyn V Nielsen‎ et al.
  • mBio‎
  • 2012‎

Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse model of E. faecalis ascending UTI. The Ebp pilus comprises the major EbpC shaft subunit and the EbpA and EbpB minor subunits. We investigated the biogenesis and function of Ebp pili in an experimental model of CAUTI using a panel of chromosomal pilin deletion mutants. A nonpiliated pilus knockout mutant (EbpABC(-) strain) was severely attenuated compared to its isogenic parent OG1RF in experimental CAUTI. In contrast, a nonpiliated ebpC deletion mutant (EbpC(-) strain) behaved similarly to OG1RF in vivo because it expressed EbpA and EbpB. Deletion of the minor pilin gene ebpA or ebpB perturbed pilus biogenesis and led to defects in experimental CAUTI. We discovered that the function of Ebp pili in vivo depended on a predicted metal ion-dependent adhesion site (MIDAS) motif in EbpA's von Willebrand factor A domain, a common protein domain among the tip subunits of sortase-assembled pili. Thus, this study identified the Ebp pilus as a virulence factor in E. faecalis CAUTI and also defined the molecular basis of this function, critical knowledge for the rational development of targeted therapeutics.


Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii.

  • Kevin M Lesage‎ et al.
  • Nucleic acids research‎
  • 2018‎

Toxoplasma gondii virulence depends on the expression of factors packed into specific organelles such as rhoptry and microneme. Although virulence factor expression is tightly regulated, the molecular mechanisms controlling their regulation remain poorly understood. ApiAP2 are a family of conserved transcription factors (TFs) that play an important role in regulating gene expression in apicomplexan parasites. TgAP2XI-5 is able to bind to transcriptionally active promoters of genes expressed during the S/M phase of the cell cycle, such as virulence genes (rhoptries and micronemes genes). We identified proteins interacting with TgAP2XI-5 including a cell cycle-regulated ApiAP2 TF, TgAP2X-5. Using an inducible knock-down strategy and RNA-seq, we demonstrated that the level of expression of number of virulence factors transcripts is affected by the disruption of TgAP2X-5 expression. While TgAP2X-5 disruption has mild effect on parasite invasion, it leads to the strain avirulence in mice. To better understand the molecular mechanisms at stake, we investigated the binding of TgAP2XI-5 at promoters in the TgAP2X-5 mutant strain in a genome-wide assay. We show that disruption of TgAP2X-5 expression leads to defects in TgAP2XI-5 binding to multiple rhoptry gene promoters. Taken together, these data suggest a cooperative contribution of two ApiAP2 TF in the regulation of virulence genes in T. gondii.


Rv0613c/MSMEG_1285 Interacts with HBHA and Mediates Its Proper Cell-Surface Exposure in Mycobacteria.

  • Romain Veyron-Churlet‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Heparin-binding haemagglutinin (HBHA) is a surface-exposed virulence factor of Mycobacterium tuberculosis and is involved in the binding of mycobacteria to non-phagocytic cells, allowing for extra-pulmonary dissemination of the bacilli. Despite its surface exposure, HBHA is not produced as a pre-protein containing a typical cleavable N-terminal signal peptide and is thus likely secreted by a Sec-independent, as of yet unknown mechanism. Here, we used the bacterial adenylate cyclase two-hybrid system to identify the proteins encoded by rv0613c and mmpL14 as being able to interact with HBHA. Our study was focused on Rv0613c, as it showed more consistent interactions with HBHA than MmpL14. Deletion of its orthologous gene MSMEG_1285 in recombinant Mycobacterium smegmatis producing HBHA from M. tuberculosis resulted in the loss of proper surface exposure of HBHA, as evidenced by atomic force microscopy. Furthermore, the lack of MSMEG_1285 also abolished the clumping phenotype and rough colony morphology of the recombinant M. smegmatis and reduced its adherence to A549 epithelial cells. These phenotypes have previously been associated with surface-exposed HBHA. Thus, MSMEG_1285 is directly involved in the proper cell-surface exposure of HBHA. These observations identify MSMEG_1285/Rv0613c as the first accessory protein involved in the cell surface exposure of HBHA.


Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

  • Marion Draheim‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

In malaria, CD4 Th1 and T follicular helper (TFH) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α+ dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10+ CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: