Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo.

  • Michael Buchert‎ et al.
  • PLoS genetics‎
  • 2010‎

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Protoporphyrin IX accumulation disrupts mitochondrial dynamics and function in ABCG2-deficient hepatocytes.

  • Yu-Hsing Lin‎ et al.
  • FEBS letters‎
  • 2013‎

Targeted inhibition of multidrug ABCG2 transporter is believed to improve cancer therapeutics. However, the consequences of ABCG2 inhibition have not been systematically evaluated since ABCG2 is expressed in several organs including the liver. Here, we demonstrate that ABCG2-deficient hepatocytes have increased amounts of fragmental mitochondria accompanied by disruption of mitochondrial dynamics and functions. This disruption was due to ABCG2 knockout elevating intracellular protoporphyrin IX, which led to upregulation of DRP-1-mediated mitochondrial fission. The finding that ABCG2 deficiency can generate dysfunctional mitochondria in hepatocytes raises concerns regarding the systematic use of ABCG2 inhibitor in cancer patients.


Human Breast Cancer Cells Demonstrate Electrical Excitability.

  • Mafalda Ribeiro‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Breast cancer is one of the most prevalent types of cancers worldwide and yet, its pathophysiology is poorly understood. Single-cell electrophysiological studies have provided evidence that membrane depolarization is implicated in the proliferation and metastasis of breast cancer. However, metastatic breast cancer cells are highly dynamic microscopic systems with complexities beyond a single-cell level. There is an urgent need for electrophysiological studies and technologies capable of decoding the intercellular signaling pathways and networks that control proliferation and metastasis, particularly at a population level. Hence, we present for the first time non-invasive in vitro electrical recordings of strongly metastatic MDA-MB-231 and weakly/non-metastatic MCF-7 breast cancer cell lines. To accomplish this, we fabricated an ultra-low noise sensor that exploits large-area electrodes, of 2 mm2, which maximizes the double-layer capacitance and concomitant detection sensitivity. We show that the current recorded after adherence of the cells is dominated by the opening of voltage-gated sodium channels (VGSCs), confirmed by application of the highly specific inhibitor, tetrodotoxin (TTX). The electrical activity of MDA-MB-231 cells surpasses that of the MCF-7 cells, suggesting a link between the cells' bioelectricity and invasiveness. We also recorded an activity pattern with characteristics similar to that of Random Telegraph Signal (RTS) noise. RTS patterns were less frequent than the asynchronous VGSC signals. The RTS noise power spectral density showed a Lorentzian shape, which revealed the presence of a low-frequency signal across MDA-MB-231 cell populations with propagation speeds of the same order as those reported for intercellular Ca2+ waves. Our recording platform paves the way for real-time investigations of the bioelectricity of cancer cells, their ionic/pharmacological properties and relationship to metastatic potential.


Next generation in vitro liver model design: Combining a permeable polystyrene membrane with a transdifferentiated cell line.

  • Kim A Luetchford‎ et al.
  • Journal of membrane science‎
  • 2018‎

Herein we describe the manufacture and characterisation of biocompatible, porous polystyrene membranes, suitable for cell culture. Though widely used in traditional cell culture, polystyrene has not been used as a hollow fibre membrane due to its hydrophobicity and non-porous structure. Here, we use microcrystalline sodium chloride (4.7 ± 1.3 µm) to control the porosity of polystyrene membranes and oxygen plasma surface treatment to reduce hydrophobicity. Increased porogen concentration correlates to increased surface pore density, macrovoid formation, gas permeability and mean pore size, but a decrease in mechanical strength. For tissue engineering applications, membranes spun from casting solutions containing 40% (w/w) sodium chloride represent a compromise between strength and permeability, having surface pore density of 208.2 ± 29.7 pores/mm2, mean surface pore size of 2.3 ± 0.7 µm, and Young's modulus of 115.0 ± 8.2 MPa. We demonstrate the biocompatibility of the material with an exciting cell line-media combination: transdifferentiation of the AR42J-B13 pancreatic cell line to hepatocyte-like cells. Treatment of AR42J-B13 with dexamethasone/oncostatin-M over 14 days induces transdifferentiation towards a hepatic phenotype. There was a distinct loss of the pancreatic phenotype, shown through loss of expression of the pancreatic marker amylase, and gain of the hepatic phenotype, shown through induction of expression of the hepatic markers transferrin, carbamoylphosphate synthetase and glutamine synthetase. The combination of this membrane fabrication method and demonstration of biocompatibility of the transdifferentiated hepatocytes provides a novel, superior, alternative design for in vitro liver models and bioartificial liver devices.


Label-free quantitative proteomics of CD133-positive liver cancer stem cells.

  • Sheng-Ta Tsai‎ et al.
  • Proteome science‎
  • 2012‎

CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q) and MaxQuant.


Induction and regulation of acute phase proteins in transdifferentiated hepatocytes.

  • Juliya K Kurash‎ et al.
  • Experimental cell research‎
  • 2004‎

Acute phase proteins (APPs) are predominantly synthesized in the liver and play an important role in restoring homeostasis. In the present study, we set out to answer two questions using transdifferentiated hepatocytes induced from pancreatic cells as a model for studying the acute phase response. Firstly, do transdifferentiated hepatocytes express acute phase proteins following culture with glucocorticoid and cytokines? Secondly, what is the molecular basis of the induction of acute phase proteins in transdifferentiated hepatocytes? Hepatic transdifferentiation was induced in 11.5-day mouse embryonic pancreas or the pancreatic cell line AR42J-B13 (B13) by culture with dexamethasone. We found that acute phase proteins [alpha2-macroglobulin (MG), haptoglobin (Hp)] were induced in both systems following culture with dexamethasone. The combined treatment of dexamethasone and oncostatin M (OSM) enhanced the expression of the acute phase proteins in B13 cells and the mechanism of the up-regulation by the cytokine is probably mediated by phosphorylation of STAT3 and STAT1. In addition, ectopic expression of either C/EBPbeta or C/EBPalpha in B13 cells induced haptoglobin expression and culture with oncostatin M was sufficient to enhance the expression of haptoglobin in C/EBPbeta transfected cells from 18% to 43%. The results of the present study indicate transdifferentiated hepatocytes have the potential to be a useful model to study liver function in vitro.


In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes.

  • Jonathan M Quinlan‎ et al.
  • BMC developmental biology‎
  • 2006‎

Study of the normal development of the intestinal epithelium has been hampered by a lack of suitable model systems, in particular ones that enable the introduction of exogenous genes. Production of such a system would advance our understanding of normal epithelial development and help to shed light on the pathogenesis of intestinal neoplasia. The criteria for a reliable culture system include the ability to perform real time observations and manipulations in vitro, the preparation of wholemounts for immunostaining and the potential for introducing genes.


Maternal vitamin A deficiency during pregnancy affects vascularized islet development.

  • Chiao-Yun Chien‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2016‎

Vitamin A deficiency is known to affect 20 million pregnant women worldwide. However, the prenatal effects of maternal vitamin A deficiency on pancreas development have not been clearly determined. The present study examined how maternal vitamin A deficiency affects fetal islet development. Vitamin A-deficient mice were generated by feeding female mice with a chemically defined diet lacking vitamin A prior to mating as well as during pregnancy. We found that maternal vitamin A deficiency during pregnancy affected fetal pancreas development. Although the exocrine differentiation appeared normal, development of islet tissue was impaired. In the pancreas of neonatal mice, only a few endocrine cell clusters were formed, and these cell clusters lacked capillary endothelial cells. To further determine how vitamin A metabolites, such as retinoic acid, regulate vascularized islet development, ex vivo culture of embryonic pancreas either in the presence of 4-diethylaminobenzaldehyde (DEAB; an inhibitor of retinaldehyde dehydrogenase), all-trans retinoic acid (atRA) or retinoic acid receptor agonist (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1-propenyl] benzoic acid (TTNPB) was carried out. We found that the addition of DEAB blocked vascularization and suppressed β-cell differentiation. Conversely, atRA or TTNPB promoted β-cell differentiation accompanied by enhanced expression of vascular basement component, laminin. We further demonstrated that atRA regulated vascularization via upregulating vascular endothelial growth factor-A (VEGF-A) secretion in embryonic pancreas and treatment with VEGF-A was able to partially rescue vascularization and β-cell differentiation in DEAB-treated embryonic pancreas cultures. The findings explain why maternal vitamin A deficiency affects fetal islet development and support an essential role of retinoid signaling in regulating vascularized islet development.


Hnf4α is a key gene that can generate columnar metaplasia in oesophageal epithelium.

  • Benjamin J Colleypriest‎ et al.
  • Differentiation; research in biological diversity‎
  • 2017‎

Barrett's metaplasia is the only known morphological precursor to oesophageal adenocarcinoma and is characterized by replacement of stratified squamous epithelium by columnar epithelium. The cell of origin is uncertain and the molecular mechanisms responsible for the change in cellular phenotype are poorly understood. We therefore explored the role of two transcription factors, Cdx2 and HNF4α in the conversion using primary organ cultures. Biopsy samples from cases of human Barrett's metaplasia were analysed for the presence of CDX2 and HNF4α. A new organ culture system for adult murine oesophagus is described. Using this, Cdx2 and HNF4α were ectopically expressed by adenoviral infection. The phenotype following infection was determined by a combination of PCR, immunohistochemical and morphological analyses. We demonstrate the expression of CDX2 and HNF4α in human biopsy samples. Our oesophageal organ culture system expressed markers characteristic of the normal SSQE: p63, K14, K4 and loricrin. Ectopic expression of HNF4α, but not of Cdx2 induced expression of Tff3, villin, K8 and E-cadherin. HNF4α is sufficient to induce a columnar-like phenotype in adult mouse oesophageal epithelium and is present in the human condition. These data suggest that induction of HNF4α is a key early step in the formation of Barrett's metaplasia and are consistent with an origin of Barrett's metaplasia from the oesophageal epithelium.


Transdifferentiation of pancreatic progenitor cells to hepatocyte-like cells is not serum-dependent when facilitated by extracellular matrix proteins.

  • Francis D Gratte‎ et al.
  • Scientific reports‎
  • 2018‎

The rising prevalence of chronic liver disease, coupled with a permanent shortage of organs for liver transplantation, has sparked enormous interest in alternative treatment strategies. Previous protocols to generate hepatocyte-like cells (HLCs) via pancreas-to-liver transdifferentiation have utilised fetal bovine serum, introducing unknown variables and severely limiting study reproducibility. Therefore, the main goal of this study was to develop a protocol for transdifferentiation of pancreatic progenitor cells to HLCs in a chemically defined, serum-free culture medium. The clonal pancreatic progenitor cell line AR42J-B13 was cultured in basal growth medium on uncoated plastic culture dishes in the absence or presence of Dexamethasone on uncoated, laminin- or fibronectin-coated culture substrata, with or without serum supplementation. The hepatocytic differentiation potential was evaluated: (i) morphologically through bright-field and scanning electron microscopy, (ii) by assessing pancreatic and hepatic marker expression and (iii) by determining the function of HLCs through their ability to synthesise glycogen or take up and release indocyanine green. Here we demonstrate for the first time that transdifferentiation of pancreatic cells to HLCs is not dependent on serum. These results will assist in converting current differentiation protocols into procedures that are compliant with clinical use in future cell-based therapies to treat liver-related metabolic disorders.


Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha.

  • Jorge P Pinto‎ et al.
  • Blood‎
  • 2008‎

Hepcidin is the principal iron regulatory hormone, controlling the systemic absorption and remobilization of iron from intracellular stores. Recent in vivo studies have shown that hepcidin is down-regulated by erythropoiesis, anemia, and hypoxia, which meets the need of iron input for erythrocyte production. Erythropoietin (EPO) is the primary signal that triggers erythropoiesis in anemic and hypoxic conditions. Therefore, a direct involvement of EPO in hepcidin regulation can be hypothesized. We report here the regulation of hepcidin expression by EPO, in a dose-dependent manner, in freshly isolated mouse hepatocytes and in the HepG2 human hepatocyte cell model. The effect is mediated through EPOR signaling, since hepcidin mRNA levels are restored by pretreatment with an EPOR-blocking antibody. The transcription factor C/EBPalpha showed a pattern of expression similar to hepcidin, at the mRNA and protein levels, following EPO and anti-EPOR treatments. Chromatin immunoprecipitation experiments showed a significant decrease of C/EBPalpha binding to the hepcidin promoter after EPO supplementation, suggesting the involvement of this transcription factor in the transcriptional response of hepcidin to EPO.


Elevation of β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis.

  • Chi-Che Hsieh‎ et al.
  • Oncotarget‎
  • 2017‎

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of pancreatic cancer with clinical characteristics of local invasion and early metastasis. Recent cohort studies indicate high fructose intake is associated with an increase in pancreatic cancer risk. However, the mechanisms by which fructose promotes pancreatic tumorigenesis remain unclear. Herein, Kras+/LSLG12D mice were crossed with Elas-CreER transgenic mice to determine whether fructose intake directly contributes to tumor formation. Orthotopic tumor-xenograft experiments were performed to determine whether fructose substitution enhances the metastatic potential of PDAC cells. The mechanisms underlying the effects of fructose were explored by RNAseq analysis in combination with high-performance anion exchange chromatography. Dietary fructose was initially found to promote the development of aggressive pancreatic cancer in mice conditionally expressing KrasG12D in the adult pancreas. We further revealed that fructose substitution enhanced the metastatic potential of human PDAC cell via selective outgrowth of aggressive ABCG2-positive subpopulations and elevating N-acetylmannosamine levels that upregulated β-galactoside α2,6-sialyltransferase 1 (ST6Gal1), thereby promoting distant metastasis. Finally, we observed that PDAC patients expressing higher levels of ST6Gal1 and GLUT5 presented poorer prognosis compared to other groups. In conclusion, our findings have elucidated a crucial role of ST6Gal1 in regulating the invasiveness of PDACs in a fructose-responsive manner.


Spatiotemporal regulation of liver development by the Wnt/β-catenin pathway.

  • Zoë D Burke‎ et al.
  • Scientific reports‎
  • 2018‎

While the Wnt/β-catenin pathway plays a critical role in the maintenance of the zonation of ammonia metabolizing enzymes in the adult liver, the mechanisms responsible for inducing zonation in the embryo are not well understood. Herein we address the spatiotemporal role of the Wnt/β-catenin pathway in the development of zonation in embryonic mouse liver by conditional deletion of Apc and β-catenin at different stages of mouse liver development. In normal development, the ammonia metabolising enzymes carbamoylphosphate synthetase I (CPSI) and Glutamine synthetase (GS) begin to be expressed in separate hepatoblasts from E13.5 and E15.5 respectively and gradually increase in number thereafter. Restriction of GS expression occurs at E18 and becomes increasingly limited to the terminal perivenous hepatocytes postnatally. Expression of nuclear β-catenin coincides with the restriction of GS expression to the terminal perivenous hepatocytes. Conditional loss of Apc resulted in the expression of nuclear β-catenin throughout the developing liver and increased number of cells expressing GS. Conversely, conditional loss of β-catenin resulted in loss of GS expression. These data suggest that the Wnt pathway is critical to the development of zonation as well as maintaining the zonation in the adult liver.


Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells.

  • Michael P Storm‎ et al.
  • PloS one‎
  • 2014‎

The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.


All-trans retinoic acid ameliorates glycemic control in diabetic mice via modulating pancreatic islet production of vascular endothelial growth factor-A.

  • Chiao-Yun Chien‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Patients with type 1 diabetes mellitus are associated with impairment in vitamin A metabolism. This study evaluated whether treatment with retinoic acid, the biologically active metabolite of vitamin A, can ameliorate diabetes. All-trans retinoic acid (atRA) was used to treat streptozotocin (STZ)-induced diabetic mice which revealed atRA administration ameliorated blood glucose levels of diabetic mice. This hyperglycemic amelioration was accompanied by an increase in the amount of β cells co-expressed Pdx1 and insulin and by restoration of the vascular laminin expression. The atRA-induced production of vascular endothelial growth factor-A from the pancreatic islets was possibly the key factor that mediated the restoration of islet vascularity and recovery of β-cell mass. Furthermore, the combination of islet transplantation and atRA administration significantly rescued hyperglycemia in diabetic mice. These findings suggest that vitamin A derivatives can potentially be used as a supplementary treatment to improve diabetes management and glycemic control.


A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3.

  • Heather K Bone‎ et al.
  • Journal of cell science‎
  • 2011‎

The use of small molecules to 'chemically direct' differentiation represents a powerful approach to promote specification of embryonic stem cells (ESCs) towards particular functional cell types for use in regenerative medicine and pharmaceutical applications. Here, we demonstrate a novel route for chemically directed differentiation of human ESCs (hESCs) into definitive endoderm (DE) exploiting a selective small-molecule inhibitor of glycogen synthase kinase 3 (GSK-3). This GSK-3 inhibitor, termed 1m, when used as the only supplement to a chemically defined feeder-free culture system, effectively promoted differentiation of ESC lines towards primitive streak (PS), mesoderm and DE. This contrasts with the role of GSK-3 in murine ESCs, where GSK-3 inhibition promotes pluripotency. Interestingly, 1m-mediated induction of differentiation involved transient NODAL expression and Nodal signalling. Prolonged treatment of hESCs with 1m resulted in the generation of a population of cells displaying hepatoblast characteristics, that is expressing α-fetoprotein and HNF4α. Furthermore, 1m-induced DE had the capacity to mature and generate hepatocyte-like cells capable of producing albumin. These findings describe, for the first time, the utility of GSK-3 inhibition, in a chemically directed approach, to a method of DE generation that is robust, potentially scalable and applicable to different hESC lines.


Keratinocyte serum-free medium maintains long-term liver gene expression and function in cultured rat hepatocytes by preventing the loss of liver-enriched transcription factors.

  • Wan-Chun Li‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2007‎

Freshly isolated hepatocytes rapidly lose their differentiated properties when placed in culture. Therefore, production of a simple culture system for maintaining the phenotype of hepatocytes in culture would greatly facilitate their study. Our aim was to identify conditions that could maintain the differentiated properties of hepatocytes for up to 28 days of culture. Adult rat hepatocytes were isolated and attached in Williams' medium E containing 10% serum. The medium was changed to either fresh Williams' medium E or keratinocyte serum-free medium supplemented with dexamethasone, epidermal growth factor and pituitary gland extract. The hepatic phenotype was then analysed using RT-PCR, immunohistochemistry, Western blotting and assays of liver function. Cells cultured in keratinocyte serum-free medium supplemented with dexamethasone, epidermal growth factor and pituitary gland extract maintained their phenotype for 3-4 weeks, based on expression of liver proteins, ureagenesis and response to xenobiotics. In contrast, hepatocytes cultured in Williams' medium E rapidly lost the expression of liver proteins after 3 days. Cells cultured in keratinocyte serum-free medium supplemented with dexamethasone, epidermal growth factor and pituitary gland extract maintained their expression of liver-enriched transcription factors (C/EBPalpha and beta, HNF4alpha and RXRalpha) while expression was either lost or reduced in cells cultured in Williams' medium E. These results suggest that keratinocyte serum-free medium supplemented with dexamethasone, epidermal growth factor and pituitary gland extract can maintain the hepatic phenotype for a prolonged period and that this is probably related to the continued expression of the liver-enriched transcription factors.


MicroRNA-122: a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity.

  • Richard Kia‎ et al.
  • Toxicological sciences : an official journal of the Society of Toxicology‎
  • 2015‎

Emerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate. We show that the sensitivity of the miR-122 cytotoxicity assay is similar to conventional assays that measure lactate dehydrogenase activity and intracellular adenosine triphosphate when applied in hepatic models with high levels of intracellular miR-122, and can be multiplexed with other assays. MiR-122 as a biomarker also has the potential to bridge results in in vitro experiments to in vivo animal models and human samples using the same assay, and to link findings from clinical studies in determining the relevance of in vitro models being developed for the study of drug-induced liver injury.


A Pro-Endocrine Pancreatic Islet Transcriptional Program Established During Development Is Retained in Human Gallbladder Epithelial Cells.

  • Mugdha V Joglekar‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Pancreatic islet β-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: