Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Structural Analysis of Genomic and Proteomic Signatures Reveal Dynamic Expression of Intrinsically Disordered Regions in Breast Cancer and Tissue.

  • Nicole Zatorski‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Structural features of proteins capture underlying information about protein evolution and function, which enhances the analysis of proteomic and transcriptomic data. Here we develop S tructural A nalysis of G ene and protein E xpression S ignatures (SAGES), a method that describes expression data using features calculated from sequence-based prediction methods and 3D structural models. We used SAGES, along with machine learning, to characterize tissues from healthy individuals and those with breast cancer. We analyzed gene expression data from 23 breast cancer patients and genetic mutation data from the COSMIC database as well as 17 breast tumor protein expression profiles. We identified prominent expression of intrinsically disordered regions in breast cancer proteins as well as relationships between drug perturbation signatures and breast cancer disease signatures. Our results suggest that SAGES is generally applicable to describe diverse biological phenomena including disease states and drug effects.


Structural signatures: a web server for exploring a database of and generating protein structural features from human cell lines and tissues.

  • Nicole Zatorski‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2022‎

Structural features of proteins provide powerful insights into biological function and similarity. Specifically, previous work has demonstrated that structural features of tissue and drug-treated cell line samples can be used to predict tissue type and characterize drug relationships, respectively. We have developed structural signatures, a web server for annotating and analyzing protein features from gene sets that are often found in transcriptomic and proteomic data. This platform provides access to a structural feature database derived from normal and disease human tissue samples. We show how analysis using this database can shed light on the relationship between states of single-cell RNA-sequencing lung cancer samples. These various structural feature signatures can be visualized on the server itself or downloaded for additional analysis. The structural signatures server tool is freely available at https://structural-server.kinametrix.com/.


The Drosophila embryonic patterning determinant torsolike is a component of the eggshell.

  • Leslie M Stevens‎ et al.
  • Current biology : CB‎
  • 2003‎

The development of the head and tail regions of the Drosophila embryo is dependent upon the localized polar activation of Torso (Tor), a receptor tyrosine kinase that is uniformly distributed in the membrane of the developing embryo. Trunk (Trk), the proposed ligand for Tor, is secreted as an inactive precursor into the perivitelline fluid that lies between the embryonic membrane and the vitelline membrane (VM), the inner layer of the eggshell. The spatial regulation of Trk processing is thought to be mediated by the secreted product of the torsolike (tsl) gene, which is expressed during oogenesis by a specialized population of follicle cells present at the two ends of the oocyte. We show here that Tsl protein is specifically localized to the polar regions of the VM in laid eggs. We further demonstrate that although Tsl can associate with nonpolar regions of the VM, the activity of polar-localized Tsl is enhanced, suggesting the existence of another spatially restricted factor acting in this pathway. The incorporation of Tsl into the VM provides a mechanism for the transfer of spatial information from the follicle cells to the developing embryo. To our knowledge, Tsl represents the first example of an embryonic patterning determinant that is a component of the eggshell.


Sulfation of eggshell components by Pipe defines dorsal-ventral polarity in the Drosophila embryo.

  • Zhenyu Zhang‎ et al.
  • Current biology : CB‎
  • 2009‎

Drosophila embryonic dorsal-ventral (DV) polarity is controlled by a group of sequentially acting serine proteases located in the fluid-filled perivitelline space between the embryonic membrane and the eggshell, which generate the ligand for the Toll receptor on the ventral side of the embryo. Spatial control of the protease cascade relies on the Pipe sulfotransferase, a fly homolog of vertebrate glycosaminoglycan-modifying enzymes, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Here we show that the vitelline membrane-like (VML) protein undergoes Pipe-dependent sulfation and, consistent with a role in conveying positional information from the egg chamber to the embryo, becomes incorporated into the eggshell at a position corresponding to the location of the follicle cells from which it was secreted. Although VML influences embryonic DV pattern in a sensitized genetic background, VML is not essential for DV axis formation, suggesting that there is redundancy in the composition of the Pipe enzymatic target. Correspondingly, we find that additional structural components of the vitelline membrane undergo Pipe-dependent sulfation. In identifying the elusive targets of Pipe, this work points to the vitelline membrane as the source of signals that generate the Drosophila DV axis.


A ventrally localized protease in the Drosophila egg controls embryo dorsoventral polarity.

  • Yong Suk Cho‎ et al.
  • Current biology : CB‎
  • 2012‎

Drosophila embryo dorsoventral (DV) polarity is defined by serine protease activity in the perivitelline space (PVS) between the embryonic membrane and the inner layer of the eggshell. Gastrulation Defective (GD) cleaves and activates Snake (Snk). Activated Snk cleaves and activates Easter (Ea), exclusively on the ventral side of the embryo. Activated Ea then processes Spätzle (Spz) into the activating ligand for Toll, a transmembrane receptor that is distributed throughout the embryonic plasma membrane. Ventral activation of Toll depends upon the activity of the Pipe sulfotransferase in the ventral region of the follicular epithelium that surrounds the developing oocyte. Pipe transfers sulfate residues to several protein components of the inner vitelline membrane layer of the eggshell. Here we show that GD protein becomes localized in the ventral PVS in a Pipe-dependent process. Moreover, ventrally concentrated GD acts to promote the cleavage of Ea by Snk through an extracatalytic mechanism that is distinct from GD's proteolytic activation of Snk. Together, these observations illuminate the mechanism through which spatially restricted sulfotransferase activity in the developing egg chamber leads to localization of serine protease activity and ultimately to spatially specific activation of the Toll receptor in the Drosophila embryo.


Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants.

  • Cigdem Sevim Bayrak‎ et al.
  • American journal of human genetics‎
  • 2021‎

Identifying whether a given genetic mutation results in a gene product with increased (gain-of-function; GOF) or diminished (loss-of-function; LOF) activity is an important step toward understanding disease mechanisms because they may result in markedly different clinical phenotypes. Here, we generated an extensive database of documented germline GOF and LOF pathogenic variants by employing natural language processing (NLP) on the available abstracts in the Human Gene Mutation Database. We then investigated various gene- and protein-level features of GOF and LOF variants and applied machine learning and statistical analyses to identify discriminative features. We found that GOF variants were enriched in essential genes, for autosomal-dominant inheritance, and in protein binding and interaction domains, whereas LOF variants were enriched in singleton genes, for protein-truncating variants, and in protein core regions. We developed a user-friendly web-based interface that enables the extraction of selected subsets from the GOF/LOF database by a broad set of annotated features and downloading of up-to-date versions. These results improve our understanding of how variants affect gene/protein function and may ultimately guide future treatment options.


DESS deconstructed: Is EDTA solely responsible for protection of high molecular weight DNA in this common tissue preservative?

  • Amy Sharpe‎ et al.
  • PloS one‎
  • 2020‎

DESS is a formulation widely used to preserve DNA in biological tissue samples. Although it contains three ingredients, dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA) and sodium chloride (NaCl), it is frequently referred to as a DMSO-based preservative. The effectiveness of DESS has been confirmed for a variety of taxa and tissues, however, to our knowledge, the contributions of each component of DESS to DNA preservation have not been evaluated. To address this question, we stored tissues of three aquatic taxa, Mytilus edulis (blue mussel), Faxonius virilis (virile crayfish) and Alitta virens (clam worm) in DESS, each component of DESS individually and solutions containing all combinations of two components of DESS. After storage at room temperature for intervals ranging from one day to six months, we extracted DNA from each tissue and measured the percentage of high molecular weight (HMW) DNA recovered (%R) and normalized HMW DNA yield (nY). Here, HMW DNA is defined as fragments >10 kb. For comparison, we also measured the %R and nY of HMW DNA from extracts of fresh tissues and those stored in 95% EtOH over the same time intervals. We found that in cases where DESS performed most effectively (yielding ≥ 20%R of HMW DNA), all solutions containing EDTA were as or more effective than DESS. Conversely, in cases where DESS performed more poorly, none of the six DESS-variant storage solutions provided better protection of HMW DNA than DESS. Moreover, for all taxa and storage intervals longer than one day, tissues stored in solutions containing DMSO alone, NaCl alone or DMSO and NaCl in combination resulted in %R and nY of HMW DNA significantly lower than those of fresh tissues. These results indicate that for the taxa, solutions and time intervals examined, only EDTA contributed directly to preservation of high molecular weight DNA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: