Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment.

  • Shih-Kuo Chen‎ et al.
  • Neuron‎
  • 2013‎

The retina consists of ordered arrays of individual types of neurons for processing vision. Here, we show that such order is necessary for intrinsically photosensitive retinal ganglion cells (ipRGCs) to function as irradiance detectors. We found that during development, ipRGCs undergo proximity-dependent Bax-mediated apoptosis. Bax mutant mice exhibit disrupted ipRGC spacing and dendritic stratification with an increase in abnormally localized synapses. ipRGCs are the sole conduit for light input to circadian photoentrainment, and either their melanopsin-based photosensitivity or ability to relay rod/cone input is sufficient for circadian photoentrainment. Remarkably, the disrupted ipRGC spacing does not affect melanopsin-based circadian photoentrainment but severely impairs rod/cone-driven photoentrainment. We demonstrate reduced rod/cone-driven cFos activation and electrophysiological responses in ipRGCs, suggesting that impaired synaptic input to ipRGCs underlies the photoentrainment deficits. Thus, for irradiance detection, developmental apoptosis is necessary for the spacing and connectivity of ipRGCs that underlie their functioning within a neural network.


NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition.

  • Shelley A Caltharp‎ et al.
  • BMC developmental biology‎
  • 2007‎

Nogo-A, a myelin-associated protein, inhibits neurite outgrowth and abates regeneration in the adult vertebrate central nervous system (CNS) and may play a role in maintaining neural pathways once established. However, the presence of Nogo-A during early CNS development is counterintuitive and hints at an additional role for Nogo-A beyond neurite inhibition.


A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice.

  • Kylie S Chew‎ et al.
  • eLife‎
  • 2017‎

The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.


Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion.

  • Anna Matynia‎ et al.
  • Experimental eye research‎
  • 2012‎

Photoallodynia (photophobia) occurs when normal levels of light cause pain ranging from uncomfortable to debilitating. The only current treatment for photoallodynia is light avoidance. The first step to understanding the mechanisms of photoallodynia is to develop reliable animal behavioral tests of light aversion and identify the photoreceptors required to initiate this response. A reliable light/dark box behavioral assay was developed that measures light aversion independently from anxiety, allowing direct testing of one endophenotype of photoallodynia in mice. Mice lacking intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit reduced aversion to bright light, suggesting these cells are the primary circuit for light aversion. Mice treated with exogenous μ opiate receptor agonists exhibited dramatically enhanced light aversion, which was not dependent on ipRGCs, suggesting an alternative pathway for light is engaged. Morphine enhances retinal electrophysiological responses to light but only at low levels. This suggests that for the dramatic light aversion observed, opiates also sensitize central brain regions of photoallodynia. Taken together, our results suggest that light aversion has at least two dissociable mechanisms by which light causes specific allodynia behaviors: a primary ipRGC-based circuit, and a secondary ipRGC-independent circuit that is unmasked by morphine sensitization. These models will be useful in delineating upstream light sensory pathways and downstream avoidance pathways that apply to photoallodynia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: