Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.

  • Xuefei Wang‎ et al.
  • Microbial biotechnology‎
  • 2015‎

The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide.


Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas.

  • Olga V Mavrodi‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains' pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts.


Hermetia illucens L. larvae-associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure.

  • Yuanpu Zhang‎ et al.
  • Microbial biotechnology‎
  • 2022‎

Black soldier fly (BSF) larvae are considered a promising biological reactor to convert organic waste and reduce the impact of zoonotic pathogens on the environment. We analysed the effects of BSF larvae on Staphylococcus aureus and Salmonella spp. populations in pig manure (PM), which showed that BSF larvae can significantly reduce the counts of the associated S. aureus and Salmonella spp. Then, using a sterile BSF larval system, we validated the function of BSF larval intestinal microbiota in vivo to suppress pathogens, and lastly, we isolated eight bacterial strains from the BSF larval gut that inhibit S. aureus. Results indicated that functional microbes are essential for BSF larvae to antagonise S. aureus. Moreover, the analysis results of the relationship between the intestinal microbiota and S. aureus and Salmonella spp. showed that Myroides, Tissierella, Oblitimonas, Paenalcalignes, Terrisporobacter, Clostridium, Fastidiosipila, Pseudomonas, Ignatzschineria, Savagea, Moheibacter and Sphingobacterium were negatively correlated with S. aureus and Salmonella. Overall, these results suggested that the potential ability of BSF larvae to inhibit S. aureus and Salmonella spp. present in PM is accomplished primarily by gut-associated microorganisms.


Cyclo(l-Pro⁻l-Leu) of Pseudomonas putida MCCC 1A00316 Isolated from Antarctic Soil: Identification and Characterization of Activity against Meloidogyne incognita.

  • Yile Zhai‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Pseudomonas putida MCCC 1A00316 was originally isolated from an Antarctic soil and has demonstrated potential nematicidal activity. Thus, it has promising applications for the biological control of Meloidogyne incognita. The larval mortality and egg-hatching inhibition rates of M. incognita will increase with the rising concentration of culture filtrates of P. putida MCCC 1A00316 and the duration of exposure. Thus, this study aimed to separate, purify, and identify nematicidal compounds from P. putida MCCC 1A00316 and to validate their anti-M. incognita activities. Compounds were purified through silica gel column chromatography and thin-layer chromatography combined with high-performance liquid chromatography (HPLC). Structural identification was conducted through liquid chromatography time-of-flight mass spectrometry, ¹H nuclear magnetic resonance (NMR) spectroscopy, 13C-NMR, and Marfey's method. The isolated compounds were identified as cyclo(l-Pro⁻l-Leu) on the basis of the results of the above analyses and previously reported data. The effects of various concentrations of cyclo(l-Pro⁻l-Leu) on the mortality rates of second-stage juveniles (J2) of M. incognita were investigated. Results showed that HPLC-purified cyclo(l-Pro⁻l-Leu) displayed nematicidal activities. The mortality rate of M. incognita J2 reached 84.3% after 72 h of exposure to 67.5 mg/L cyclo(l-Pro⁻l-Leu). The lowest egg-hatching rate (9.74%) was observed after 8 days of incubation with 2000 mg/L cyclo(l-Pro⁻l-Leu). An egg-hatching rate of 53.11% was obtained under the control treatment (sterile distilled water). However, cyclo(l-Pro⁻l-Leu) did not elicit chemotaxis activity to M. incognita. This is the first work to investigate the anti-M. incognita characteristics of cyclo(l-Pro⁻l-Leu).


Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions.

  • Joyce E Loper‎ et al.
  • PLoS genetics‎
  • 2012‎

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L.

  • Yaqing Huang‎ et al.
  • PloS one‎
  • 2020‎

Black soldier fly (BSF; Hermetia illucens L.) larvae can convert fresh pig manure into protein and fat-rich biomass, which can then be used as aquafeed for select species. Currently, BSF is the only approved insect for such purposes in Canada, USA, and the European Union. Pig manure could serve as a feed substrate for BSF; however, it is contaminated with zoonotic pathogens (e.g., Staphylococcus aureus and Salmonella spp.). Fortunately, BSF larvae inhibit many of these zoonotic pathogens; however, the mechanisms employed are unclear. We employed RNAi, qRT-PCR, and Illumina MiSeq 16S rDNA high-throughput sequencing to examine the interaction between two immune genes (Duox in Duox-reactive oxygen species [ROS] immune system and TLR3 in the Toll signaling pathway) and select pathogens common in pig manure to decipher the mechanisms resulting in pathogen suppression. Results indicate Bsf Duox-TLR3 RNAi increased bacterial load but decreased relative abundance of Providencia and Dysgonomonas, which are thought to be commensals in the BSF larval gut. Bsf Duox-TLR3 RNAi also inactivated the NF-κB signaling pathway, downregulated the expression of antimicrobial peptides, and diminished inhibitory effects on zoonotic pathogen. The resulting dysbiosis stimulated an immune response by activating BsfDuox and promoting ROS, which regulated the composition and structure of the gut bacterial community. Thus, BsfDuox and BsfTLR3 are important factors in regulating these key gut microbes, while inhibiting target zoonotic pathogens.


Synergistic bioconversion of organic waste by black soldier fly (Hermetia illucens) larvae and thermophilic cellulose-degrading bacteria.

  • Mingying Shao‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

This study examines the optimum conversion of Wuzhishan pig manure by Black Soldier Fly Larvae (BSFL) at various phases of development, as well as the impact of gut microbiota on conversion efficiency.


Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae).

  • Longyu Zheng‎ et al.
  • Scientific reports‎
  • 2013‎

There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied.


Volatile Organic Compounds from Bacillus aryabhattai MCCC 1K02966 with Multiple Modes against Meloidogyne incognita.

  • Wen Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Plant-parasitic nematodes cause severe losses to crop production and economies all over the world. Bacillus aryabhattai MCCC 1K02966, a deep-sea bacterium, was obtained from the Southwest Indian Ocean and showed nematicidal and fumigant activities against Meloidogyne incognita in vitro. The nematicidal volatile organic compounds (VOCs) from the fermentation broth of B. aryabhattai MCCC 1K02966 were investigated further using solid-phase microextraction gas chromatography-mass spectrometry. Four VOCs, namely, pentane, 1-butanol, methyl thioacetate, and dimethyl disulfide, were identified in the fermentation broth. Among these VOCs, methyl thioacetate exhibited multiple nematicidal activities, including contact nematicidal, fumigant, and repellent activities against M. incognita. Methyl thioacetate showed a significant contact nematicidal activity with 87.90% mortality at 0.01 mg/mL by 72 h, fumigant activity in mortality 91.10% at 1 mg/mL by 48 h, and repellent activity at 0.01-10 mg/mL. In addition, methyl thioacetate exhibited 80-100% egg-hatching inhibition on the 7th day over the range of 0.5 mg/mL to 5 mg/mL. These results showed that methyl thioacetate from MCCC 1K02966 control M. incognita with multiple nematicidal modes and can be used as a potential biological control agent.


Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.).

  • Jingjing Zhang‎ et al.
  • Protein expression and purification‎
  • 2022‎

Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and β-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.


Glutamic acid reshapes the plant microbiota to protect plants against pathogens.

  • Da-Ran Kim‎ et al.
  • Microbiome‎
  • 2021‎

Plants in nature interact with other species, among which are mutualistic microorganisms that affect plant health. The co-existence of microbial symbionts with the host contributes to host fitness in a natural context. In turn, the composition of the plant microbiota responds to the environment and the state of the host, raising the possibility that it can be engineered to benefit the plant. However, technology for engineering the structure of the plant microbiome is not yet available.


Multiple Receptors Contribute to the Attractive Response of Caenorhabditis elegans to Pathogenic Bacteria.

  • Wanli Cheng‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Nematodes feed mainly on bacteria and sense volatile signals through their chemosensory system to distinguish food from pathogens. Although nematodes recognizing bacteria by volatile metabolites are ubiquitous, little is known of the associated molecular mechanism. Here, we show that the antinematode bacterium Paenibacillus polymyxa KM2501-1 exhibits an attractive effect on Caenorhabditis elegans via volatile metabolites, of which furfural acetone (FAc) acts as a broad-spectrum nematode attractant. We show that the attractive response toward FAc requires both the G-protein-coupled receptors STR-2 in AWC neurons and SRA-13 in AWA and AWC neurons. In the downstream olfactory signaling cascades, both the transient receptor potential vanilloid channel and the cyclic nucleotide-gated channel are necessary for FAc sensation. These results indicate that multiple receptors and subsequent signaling cascades contribute to the attractive response of C. elegans to FAc, and FAc is the first reported ligand of SRA-13. Our current work discovers that P. polymyxa KM2501-1 exhibits an attractive effect on nematodes by secreting volatile metabolites, especially FAc and 2-heptanone, broadening our understanding of the interactions between bacterial pathogens and nematodes. IMPORTANCE Nematodes feed on nontoxic bacteria as a food resource and avoid toxic bacteria; they distinguish them through their volatile metabolites. However, the mechanism of how nematodes recognize bacteria by volatile metabolites is not fully understood. Here, the antinematode bacterium Paenibacillus polymyxa KM2501-1 is found to exhibit an attractive effect on Caenorhabditis elegans via volatile metabolites, including FAc. We further reveal that the attractive response of C. elegans toward FAc requires multiple G-protein-coupled receptors and downstream olfactory signaling cascades in AWA and AWC neurons. This study highlights the important role of volatile metabolites in the interaction between nematodes and bacteria and confirms that multiple G-protein-coupled receptors on different olfactory neurons of C. elegans can jointly sense bacterial volatile signals.


Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi.

  • Gyeongjun Cho‎ et al.
  • Open biology‎
  • 2017‎

Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi.


Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes.

  • Daniel Dar‎ et al.
  • eLife‎
  • 2020‎

Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.


Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein.

  • Hui Wang‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

As a major lignocellulosic biomass, which represented more than half of the world's agricultural phytomass, crop residues have been considered as feedstock for biofuel production. However, large-scale application of this conventional biofuel process has been facing obstacles from cost efficiency, pretreatment procedure, and secondary pollution. To meet the growing demands for food, feed, and energy as the global population continues to grow, certain kinds of insects, many of which are voracious feeders of organic wastes that may help address environmental, economic, and health issues, have been highlighted as a source of protein and fat.


Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316.

  • Jing Guo‎ et al.
  • Scientific reports‎
  • 2016‎

We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316.


De novo transcriptome sequencing and analysis revealed the molecular basis of rapid fat accumulation by black soldier fly (Hermetia illucens, L.) for development of insectival biodiesel.

  • Zhaolu Zhu‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Black soldier fly (BSF, Hermetia illucens L.) can efficiently degrade organic wastes and transform into a high fat containing insect biomass that could be used as feedstock for biodiesel production. Meanwhile, the molecular regulatory basis of fat accumulation by BSF is still unclear; it is necessary to identify vital genes and regulators that are involved in fat accumulation.


A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees.

  • Da-Ran Kim‎ et al.
  • Nature communications‎
  • 2019‎

Microbes can establish mutualistic interactions with plants and insects. Here we track the movement of an endophytic strain of Streptomyces bacteria throughout a managed strawberry ecosystem. We show that a Streptomyces isolate found in the rhizosphere and on flowers protects both the plant and pollinating honeybees from pathogens (phytopathogenic fungus Botrytis cinerea and pathogenic bacteria, respectively). The pollinators can transfer the Streptomyces bacteria among flowers and plants, and Streptomyces can move into the plant vascular bundle from the flowers and from the rhizosphere. Our results present a tripartite mutualism between Streptomyces, plant and pollinator partners.


Identification and Characterization of Nematicidal Volatile Organic Compounds from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493.

  • Dian Huang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Root-knot nematode diseases cause severe yield and economic losses each year in global agricultural production. Virgibacillus dokdonensis MCCC 1A00493, a deep-sea bacterium, shows a significant nematicidal activity against Meloidogyne incognita in vitro. However, information about the active substances of V. dokdonensis MCCC 1A00493 is limited. In this study, volatile organic compounds (VOCs) from V. dokdonensis MCCC 1A00493 were isolated and analyzed through solid-phase microextraction and gas chromatography-mass spectrometry. Four VOCs, namely, acetaldehyde, dimethyl disulfide, ethylbenzene, and 2-butanone, were identified, and their nematicidal activities were evaluated. The four VOCs had a variety of active modes on M. incognita juveniles. Acetaldehyde had direct contact killing, fumigation, and attraction activities; dimethyl disulfide had direct contact killing and attraction activities; ethylbenzene had an attraction activity; and 2-butanone had a repellent activity. Only acetaldehyde had a fumigant activity to inhibit egg hatching. Combining this fumigant activity against eggs and juveniles could be an effective strategy to control the different developmental stages of M. incognita. The combination of direct contact and attraction activities could also establish trapping and killing strategies against root-knot nematodes. Considering all nematicidal modes or strategies, we could use V. dokdonensis MCCC 1A00493 to set up an integrated strategy to control root-knot nematodes.


Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome.

  • Dmitri V Mavrodi‎ et al.
  • Frontiers in plant science‎
  • 2018‎

The Inland Pacific Northwest (IPNW) encompasses 1. 6 million cropland hectares and is a major wheat-producing area in the western United States. The climate throughout the region is semi-arid, making the availability of water a significant challenge for IPNW agriculture. Much attention has been given to uncovering the effects of water stress on the physiology of wheat and the dynamics of its soilborne diseases. In contrast, the impact of soil moisture on the establishment and activity of microbial communities in the rhizosphere of dryland wheat remains poorly understood. We addressed this gap by conducting a three-year field study involving wheat grown in adjacent irrigated and dryland (rainfed) plots established in Lind, Washington State. We used deep amplicon sequencing of the V4 region of the 16S rRNA to characterize the responses of the wheat rhizosphere microbiome to overhead irrigation. We also characterized the population dynamics and activity of indigenous Phz+ rhizobacteria that produce the antibiotic phenazine-1-carboxylic acid (PCA) and contribute to the natural suppression of soilborne pathogens of wheat. Results of the study revealed that irrigation affected the Phz+ rhizobacteria adversely, which was evident from the significantly reduced plant colonization frequency, population size and levels of PCA in the field. The observed differences between irrigated and dryland plots were reproducible and amplified over the course of the study, thus identifying soil moisture as a critical abiotic factor that influences the dynamics, and activity of indigenous Phz+ communities. The three seasons of irrigation had a slight effect on the overall diversity within the rhizosphere microbiome but led to significant differences in the relative abundances of specific OTUs. In particular, irrigation differentially affected multiple groups of Bacteroidetes and Proteobacteria, including taxa with known plant growth-promoting activity. Analysis of environmental variables revealed that the separation between irrigated and dryland treatments was due to changes in the water potential (Ψm) and pH. In contrast, the temporal changes in the composition of the rhizosphere microbiome correlated with temperature and precipitation. In summary, our long-term study provides insights into how the availability of water in a semi-arid agroecosystem shapes the belowground wheat microbiome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: