Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Randomized Trial of Tocilizumab in the Treatment of Refractory Adult Polymyositis and Dermatomyositis.

  • Chester V Oddis‎ et al.
  • ACR open rheumatology‎
  • 2022‎

To assess the efficacy and tolerability of tocilizumab in a multicenter, randomized, double-blind, placebo-controlled trial in refractory adult patients with dermatomyositis (DM) and polymyositis (PM).


Complete reversal of Lambert-Eaton myasthenic syndrome synaptic impairment by the combined use of a K+ channel blocker and a Ca2+ channel agonist.

  • Tyler B Tarr‎ et al.
  • The Journal of physiology‎
  • 2014‎

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder in which a significant fraction of the presynaptic P/Q-type Ca(2+) channels critical to the triggering of neurotransmitter release at the neuromuscular junction (NMJ) are thought to be removed. There is no cure for LEMS, and the current most commonly used symptomatic treatment option is a potassium channel blocker [3,4-diaminopyridine (3,4-DAP)] that does not completely reverse symptoms and can have dose-limiting side-effects. We previously reported the development of a novel Ca(2+) channel agonist, GV-58, as a possible alternative treatment strategy for LEMS. In this study, we tested the hypothesis that the combination of GV-58 and 3,4-DAP will elicit a supra-additive increase in neurotransmitter release at LEMS model NMJs. First, we tested GV-58 in a cell survival assay to assess potential effects on cyclin-dependent kinases (Cdks) and showed that GV-58 did not affect cell survival at the relevant concentrations for Ca(2+) channel effects. Then, we examined the voltage dependence of GV-58 effects on Ca(2+) channels using patch clamp techniques; this showed the effects of GV-58 to be dependent upon Ca(2+) channel opening. Based on this mechanism, we predicted an interaction between 3,4-DAP and GV-58. We tested this hypothesis using a mouse passive transfer model of LEMS. Using intracellular electrophysiological ex vivo recordings, we demonstrated that a combined application of 3,4-DAP plus GV-58 had a supra-additive effect that completely reversed the deficit in neurotransmitter release magnitude at LEMS model NMJs. This reversal contrasts with the less significant improvement observed with either compound alone. Our data indicate that a combination of 3,4-DAP and GV-58 represents a promising treatment option for LEMS and potentially for other disorders of the NMJ.


Longitudinal biomarkers in amyotrophic lateral sclerosis.

  • Fen Huang‎ et al.
  • Annals of clinical and translational neurology‎
  • 2020‎

To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects.


TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics.

  • Ian R Mackenzie‎ et al.
  • Neuron‎
  • 2017‎

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis.

  • Judyta K Juranek‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE) as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products), S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1) proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML) AGE, S100B, and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.


Use of diffusion spectrum imaging in preliminary longitudinal evaluation of amyotrophic lateral sclerosis: development of an imaging biomarker.

  • Kumar Abhinav‎ et al.
  • Frontiers in human neuroscience‎
  • 2014‎

Previous diffusion tensor imaging (DTI) studies have shown white matter pathology in amyotrophic lateral sclerosis (ALS), predominantly in the motor pathways. Further these studies have shown that DTI can be used longitudinally to track pathology over time, making white matter pathology a candidate as an outcome measure in future trials. DTI has demonstrated application in group studies, however its derived indices, for example fractional anisotropy, are susceptible to partial volume effects, making its role questionable in examining individual progression. We hypothesize that changes in the white matter are present in ALS beyond the motor tracts, and that the affected pathways and associated pattern of disease progression can be tracked longitudinally using automated diffusion connectometry analysis. Connectometry analysis is based on diffusion spectrum imaging and overcomes the limitations of a conventional tractography approach and DTI. The identified affected white matter tracts can then be assessed in a targeted fashion using High definition fiber tractography (a novel white matter MR imaging technique). Changes in quantitative and qualitative markers over time could then be correlated with clinical progression. We illustrate these principles toward developing an imaging biomarker for demonstrating individual progression, by presenting results for five ALS patients, including with longitudinal data in two. Preliminary analysis demonstrated a number of changes bilaterally and asymmetrically in motoric and extramotoric white matter pathways. Further the limbic system was also affected possibly explaining the cognitive symptoms in ALS. In the two longitudinal subjects, the white matter changes were less extensive at baseline, although there was evidence of disease progression in a frontal pattern with a relatively spared postcentral gyrus, consistent with the known pathology in ALS.


Differential tractography as a track-based biomarker for neuronal injury.

  • Fang-Cheng Yeh‎ et al.
  • NeuroImage‎
  • 2019‎

Diffusion MRI tractography has been used to map the axonal structure of the human brain, but its ability to detect neuronal injury is yet to be explored. Here we report differential tractography, a new type of tractography that utilizes repeat MRI scans and a novel tracking strategy to map the exact segment of fiber pathways with a neuronal injury. We examined differential tractography on multiple sclerosis, Huntington's disease, amyotrophic lateral sclerosis, and epileptic patients. The results showed that the affected pathways shown by differential tractography matched well with the unique clinical symptoms of the patients, and the false discovery rate of the findings could be estimated using a sham setting to provide a reliability measurement. This novel approach enables a quantitative and objective method to monitor neuronal injury in individuals, allowing for diagnostic and prognostic evaluation of brain diseases.


Clinical and neuropathological features of ALS/FTD with TIA1 mutations.

  • Veronica Hirsch-Reinshagen‎ et al.
  • Acta neuropathologica communications‎
  • 2017‎

Mutations in the stress granule protein T-cell restricted intracellular antigen 1 (TIA1) were recently shown to cause amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). Here, we provide detailed clinical and neuropathological descriptions of nine cases with TIA1 mutations, together with comparisons to sporadic ALS (sALS) and ALS due to repeat expansions in C9orf72 (C9orf72+). All nine patients with confirmed mutations in TIA1 were female. The clinical phenotype was heterogeneous with a range in the age at onset from late twenties to the eighth decade (mean = 60 years) and disease duration from one to 6 years (mean = 3 years). Initial presentation was either focal weakness or language impairment. All affected individuals received a final diagnosis of ALS with or without FTD. No psychosis or parkinsonism was described. Neuropathological examination on five patients found typical features of ALS and frontotemporal lobar degeneration (FTLD-TDP, type B) with anatomically widespread TDP-43 proteinopathy. In contrast to C9orf72+ cases, caudate atrophy and hippocampal sclerosis were not prominent. Detailed evaluation of the pyramidal motor system found a similar degree of neurodegeneration and TDP-43 pathology as in sALS and C9orf72+ cases; however, cases with TIA1 mutations had increased numbers of lower motor neurons containing round eosinophilic and Lewy body-like inclusions on HE stain and round compact cytoplasmic inclusions with TDP-43 immunohistochemistry. Immunohistochemistry and immunofluorescence failed to demonstrate any labeling of inclusions with antibodies against TIA1. In summary, our TIA1 mutation carriers developed ALS with or without FTD, with a wide range in age at onset, but without other neurological or psychiatric features. The neuropathology was characterized by widespread TDP-43 pathology, but a more restricted pattern of neurodegeneration than C9orf72+ cases. Increased numbers of round eosinophilic and Lewy-body like inclusions in lower motor neurons may be a distinctive feature of ALS caused by TIA1 mutations.


MYL2-associated congenital fiber-type disproportion and cardiomyopathy with variants in additional neuromuscular disease genes; the dilemma of panel testing.

  • Minttu Marttila‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2019‎

Next-generation sequencing has led to transformative advances in our ability to diagnose rare diseases by simultaneously sequencing dozens, hundreds, or even entire genomes worth of genes to efficiently identify pathogenic mutations. These studies amount to multiple hypothesis testing on a massive scale and not infrequently lead to discovery of multiple genetic variants whose relative contributions to a patient's disease are unclear. Panel testing, in particular, can be problematic because each of the many genes being sequenced might represent a plausible explanation for a given case. We performed targeted gene panel analysis of 43 established neuromuscular disease genes in a patient with congenital fiber-type disproportion (CFTD) and fatal infantile cardiomyopathy. Initial review of variants identified changes in four genes that could be considered relevant candidates to cause this child's disease. Further analysis revealed that two of these are likely benign, but a homozygous frameshift variant in the myosin light chain 2 gene, MYL2, and a heterozygous nonsense mutation in the nebulin gene, NEB, met criteria to be classified as likely pathogenic or pathogenic. Recessive MYL2 mutations are a rare cause of CFTD associated with both skeletal and cardiomyopathy, whereas recessive NEB mutations cause nemaline myopathy. Although the proband's phenotype is likely largely explained by the MYL2 variant, the heterozygous pathogenic NEB variant cannot be ruled out as a contributing factor. This case illustrates the complexity when analyzing large numbers of variants from targeted gene panels in which each of the genes might plausibly contribute to the patient's clinical presentation.


Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated.

  • Tanisha Singh‎ et al.
  • Scientific reports‎
  • 2021‎

Amyotrophic lateral sclerosis is an adult-onset neurodegenerative disorder characterized by loss of motor neurons. Mitochondria are essential for neuronal survival but the developmental timing and mechanistic importance of mitochondrial dysfunction in sporadic ALS (sALS) neurons is not fully understood. We used human induced pluripotent stem cells and generated a developmental timeline by differentiating sALS iPSCs to neural progenitors and to motor neurons and comparing mitochondrial parameters with familial ALS (fALS) and control cells at each developmental stage. We report that sALS and fALS motor neurons have elevated reactive oxygen species levels, depolarized mitochondria, impaired oxidative phosphorylation, ATP loss and defective mitochondrial protein import compared with control motor neurons. This phenotype develops with differentiation into motor neurons, the affected cell type in ALS, and does not occur in the parental undifferentiated sALS cells or sALS neural progenitors. Our work demonstrates a developmentally regulated unifying mitochondrial phenotype between patient derived sALS and fALS motor neurons. The occurrence of a unifying mitochondrial phenotype suggests that mitochondrial etiology known to SOD1-fALS may applicable to sALS. Furthermore, our findings suggest that disease-modifying treatments focused on rescue of mitochondrial function may benefit both sALS and fALS patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: