Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 107 papers

Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1-imposed block in proteasome-mediated degradation.

  • Mathew L Coleman‎ et al.
  • The EMBO journal‎
  • 2003‎

Ras promotes the accumulation of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1) (p21). Previous studies reported that acute Raf/MEK/ERK activation elevates p21 protein levels by increased transcription. However, we have found that p21 induction in Ras-transformed murine fibroblasts occurs principally by a post-translational mechanism. Chronic activation of the Raf/MEK/ERK pathway blocked proteasome-mediated p21 degradation, resulting in accumulation of p21 protein with an elevated half-life. The stabilization of p21 by Ras was accompanied by high levels of p21-associated cyclin D1 and, similarly to Ras, cyclin D1 was sufficient to inhibit the proteasome-mediated p21 degradation. Knock-down of cyclin D1 by RNA interference confirmed that Ras-induced p21 stabilization was dependent upon cyclin D1 expression. We show that p21 directly binds to the C8alpha subunit of the 20S proteasome complex and that by competing for binding, cyclin D1 inhibits p21 degradation by purified 20S complexes in vitro. Therefore, we propose that Ras stabilizes p21 by promoting the formation of p21-cyclin D1 complexes that prevent p21 association with, and subsequent degradation by, the 20S proteasome.


Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition.

  • Xiaolin Xiao‎ et al.
  • BMC systems biology‎
  • 2011‎

The quantification of experimentally-induced alterations in biological pathways remains a major challenge in systems biology. One example of this is the quantitative characterization of alterations in defined, established metabolic pathways from complex metabolomic data. At present, the disruption of a given metabolic pathway is inferred from metabolomic data by observing an alteration in the level of one or more individual metabolites present within that pathway. Not only is this approach open to subjectivity, as metabolites participate in multiple pathways, but it also ignores useful information available through the pairwise correlations between metabolites. This extra information may be incorporated using a higher-level approach that looks for alterations between a pair of correlation networks. In this way experimentally-induced alterations in metabolic pathways can be quantitatively defined by characterizing group differences in metabolite clustering. Taking this approach increases the objectivity of interpreting alterations in metabolic pathways from metabolomic data.


Metabolomic Profiling of Submaximal Exercise at a Standardised Relative Intensity in Healthy Adults.

  • Ali Muhsen Ali‎ et al.
  • Metabolites‎
  • 2016‎

Ten physically active subjects underwent two cycling exercise trials. In the first, aerobic capacity (VO2max) was determined and the second was a 45 min submaximal exercise test. Urine samples were collected separately the day before (day 1) , the day of (day 2), and the day after (day 3) the submaximal exercise test (12 samples per subject). Metabolomic profiling of the samples was carried out using hydrophilic interaction chromatography (HILIC) coupled to an Orbitrap Exactive mass spectrometer. Data were extracted, database searched and then subjected to principle components (PCA) and orthogonal partial least squares (OPLSDA) modelling. The best results were obtained from pre-treating the data by normalising the metabolites to their mean output on days 1 and 2 of the trial. This allowed PCA to separate the day 2 first void samples (D2S1) from the day 2 post-exercise samples (D2S3) PCA also separated the equivalent samples obtained on day 1 (D1S1 and D1S3). OPLSDA modelling separated both the D2S1 and D2S3 samples and D1S1 and D1S3 samples. The metabolites affected by the exercise samples included a range of purine metabolites and several acyl carnitines. Some metabolites were subject to diurnal variation these included bile acids and several amino acids, the variation of these metabolites was similar on day 1 and day 2 despite the exercise intervention on day 2. Using OPLS modelling it proved possible to identify a single abundant urinary metabolite provisionally identified as oxo-aminohexanoic acid (OHA) as being strongly correlated with VO2max when the levels in the D2S3 samples were considered.


ROCK signalling induced gene expression changes in mouse pancreatic ductal adenocarcinoma cells.

  • Nicola Rath‎ et al.
  • Scientific data‎
  • 2016‎

The RhoA and RhoC GTPases act via the ROCK1 and ROCK2 kinases to promote actomyosin contraction, resulting in directly induced changes in cytoskeleton structures and altered gene transcription via several possible indirect routes. Elevated activation of the Rho/ROCK pathway has been reported in several diseases and pathological conditions, including disorders of the central nervous system, cardiovascular dysfunctions and cancer. To determine how increased ROCK signalling affected gene expression in pancreatic ductal adenocarcinoma (PDAC) cells, we transduced mouse PDAC cell lines with retroviral constructs encoding fusion proteins that enable conditional activation of ROCK1 or ROCK2, and subsequently performed RNA sequencing (RNA-Seq) using the Illumina NextSeq 500 platform. We describe how gene expression datasets were generated and validated by comparing data obtained by RNA-Seq with RT-qPCR results. Activation of ROCK1 or ROCK2 signalling induced significant changes in gene expression that could be used to determine how actomyosin contractility influences gene transcription in pancreatic cancer.


Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation.

  • Filipe C Lourenço‎ et al.
  • Gut‎
  • 2014‎

Colorectal cancer (CRC) is a major contributor to cancer mortality and morbidity. LIM kinase 2 (LIMK2) promotes tumour cell invasion and metastasis. The objectives of this study were to determine how LIMK2 expression is associated with CRC progression and patient outcome, and to use genetically modified Drosophila and mice to determine how LIMK2 deletion affects gastrointestinal stem cell regulation and tumour development.


Prolonged transition time between colostrum and mature milk in a bear, the giant panda, Ailuropoda melanoleuca.

  • Kate Griffiths‎ et al.
  • Royal Society open science‎
  • 2015‎

Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20-30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates.


Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension.

  • Neil MacRitchie‎ et al.
  • Cellular signalling‎
  • 2016‎

Recent studies have demonstrated that the expression of sphingosine kinase 1, the enzyme that catalyses formation of the bioactive lipid, sphingosine 1-phosphate, is increased in lungs from patients with pulmonary arterial hypertension. In addition, Sk1(-/-) mice are protected from hypoxic-induced pulmonary arterial hypertension. Therefore, we assessed the effect of the sphingosine kinase 1 selective inhibitor, PF-543 and a sphingosine kinase 1/ceramide synthase inhibitor, RB-005 on pulmonary and cardiac remodelling in a mouse hypoxic model of pulmonary arterial hypertension. Administration of the potent sphingosine kinase 1 inhibitor, PF-543 in a mouse hypoxic model of pulmonary hypertension had no effect on vascular remodelling but reduced right ventricular hypertrophy. The latter was associated with a significant reduction in cardiomyocyte death. The protection involves a reduction in the expression of p53 (that promotes cardiomyocyte death) and an increase in the expression of anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). In contrast, RB-005 lacked effects on right ventricular hypertrophy, suggesting that sphingosine kinase 1 inhibition might be nullified by concurrent inhibition of ceramide synthase. Therefore, our findings with PF-543 suggest an important role for sphingosine kinase 1 in the development of hypertrophy in pulmonary arterial hypertension.


Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors.

  • Michael F Olson‎
  • Small GTPases‎
  • 2018‎

The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.


Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

  • Christian Frezza‎ et al.
  • PloS one‎
  • 2011‎

Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS), to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.


Regulation of autophagosome formation by Rho kinase.

  • Andrzej Mleczak‎ et al.
  • Cellular signalling‎
  • 2013‎

Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that functions at a constitutive level in cells, which may become further activated by stressors such as nutrient starvation or protein aggregation. Autophagy has multiple beneficial roles for maintaining normal cellular homeostasis and these roles are related to the implications of autophagy in disease mechanisms including neurodegeneration and cancer. We previously searched for novel autophagy regulators and identified Rho-kinase 1 (ROCK1) as a candidate. Here, we show that activated ROCK1 inhibits autophagy in human embryonic kidney 293 cells. Conversely, ROCK inhibitory compounds enhanced the autophagy response to amino acid starvation or rapamycin treatment. Inhibition of ROCK during the starvation period led to a more rapid response with the production of larger early autophagosomes that matured into enlarged late degradative autolysosomes. Despite the production of enlarged LC3-positive early autophagosomes, membrane precursors containing WD-repeat protein interacting with phosphoinositides 1 (WIPI1) and mammalian Atg9 were not affected by ROCK inhibition, suggesting that phagophore elongation had been unusually extended. However, the enlarged autophagosomes were enriched in ULK1 which was essential to allow progression of autophagy flux. Our results demonstrate a novel role for ROCK in the control of autophagosome size and degradative capacity.


Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine.

  • Gareth D Westrop‎ et al.
  • PloS one‎
  • 2017‎

Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus.


Induction of the nicotinamide riboside kinase NAD+ salvage pathway in a model of sarcoplasmic reticulum dysfunction.

  • Craig L Doig‎ et al.
  • Skeletal muscle‎
  • 2020‎

Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11β-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation.


Effect of Melittin on Metabolomic Profile and Cytokine Production in PMA-Differentiated THP-1 Cells.

  • Abdulmalik M Alqarni‎ et al.
  • Vaccines‎
  • 2018‎

Melittin, the major active peptide of honeybee venom (BV), has potential for use in adjuvant immunotherapy. The immune system response to different stimuli depends on the secretion of different metabolites from macrophages. One potent stimulus is lipopolysaccharide (LPS), a component isolated from gram-negative bacteria, which induces the secretion of pro-inflammatory cytokines in macrophage cell cultures. This secretion is amplified when LPS is combined with melittin. In the present study, pure melittin was isolated from whole BV by flash chromatography to obtain pure melittin. The ability of melittin to enhance the release of tumour necrosis factor-α (TNF-α), Interleukin (IL-1β, IL-6, and IL-10) cytokines from a macrophage cell line (THP-1) was then assessed. The response to melittin and LPS, applied alone or in combination, was characterised by metabolic profiling, and the metabolomics results were used to evaluate the potential of melittin as an immune adjuvant therapy. The addition of melittin enhanced the release of inflammatory cytokines induced by LPS. Effective chromatographic separation of metabolites was obtained by liquid chromatography-mass spectrometry (LC-MS) using a ZIC-pHILIC column and an ACE C4 column. The levels of 108 polar and non-polar metabolites were significantly changed (p ˂ 0.05) following cell activation by the combination of LPS and melittin when compared to untreated control cells. Overall, the findings of this study suggested that melittin might have a potential application as a vaccine adjuvant.


Deletion of TSPO Resulted in Change of Metabolomic Profile in Retinal Pigment Epithelial Cells.

  • Abdulwahab Alamri‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Age-related macular degeneration is the main cause of vision loss in the aged population worldwide. Drusen, extracellular lesions formed underneath the retinal pigment epithelial (RPE) cells, are a clinical feature of AMD and associated with AMD progression. RPE cells support photoreceptor function by providing nutrition, phagocytosing outer segments and removing metabolic waste. Dysfunction and death of RPE cells are early features of AMD. The translocator protein, TSPO, plays an important role in RPE cholesterol efflux and loss of TSPO results in increased intracellular lipid accumulation and reactive oxygen species (ROS) production. This study aimed to investigate the impact of TSPO knockout on RPE cellular metabolism by identifying the metabolic differences between wildtype and knockout RPE cells, with or without treatment with oxidized low density lipoprotein (oxLDL). Using liquid chromatography mass spectrometry (LC/MS), we differentiated several metabolic pathways among wildtype and knockout cells. Lipids amongst other intracellular metabolites were the most influenced by loss of TSPO and/or oxLDL treatment. Glucose, amino acid and nucleotide metabolism was also affected. TSPO deletion led to up-regulation of fatty acids and glycerophospholipids, which in turn possibly affected the cell membrane fluidity and stability. Higher levels of glutathione disulphide (GSSG) were found in TSPO knockout RPE cells, suggesting TSPO regulates mitochondrial-mediated oxidative stress. These data provide biochemical insights into TSPO-associated function in RPE cells and may shed light on disease mechanisms in AMD.


Immunogenic Death of Hepatocellular Carcinoma Cells in Mice Expressing Caspase-Resistant ROCK1 Is Not Replicated by ROCK Inhibitors.

  • Gregory Naylor‎ et al.
  • Cancers‎
  • 2022‎

The morphological changes during apoptosis help facilitate "immunologically silent" cell death. Caspase cleavage of the ROCK1 kinase results in its activation, which drives the forceful contraction of apoptotic cells. We previously showed that when ROCK1 was mutated to render it caspase-resistant, there was greater liver damage and neutrophil recruitment after treatment with the hepatotoxin diethylnitrosamine (DEN). We now show that acute DEN-induced liver damage induced higher levels of pro-inflammatory cytokines/chemokines, indicative of immunogenic cell death (ICD), in mice expressing non-cleavable ROCK1 (ROCK1nc). Hepatocellular carcinoma (HCC) tumours in ROCK1nc mice had more neutrophils and CD8+ T cells relative to mice expressing wild-type ROCK1, indicating that spontaneous tumour cell death also was more immunogenic. Since ICD induction has been proposed to be tumour-suppressive, the effects of two distinct ROCK inhibitors on HCC tumours was examined. Both fasudil and AT13148 significantly decreased tumour numbers, areas and volumes, but neither resulted in greater numbers of neutrophils or CD8+ T cells to be recruited. In the context of acute DEN-induced liver damage, AT13148 inhibited the recruitment of dendritic, natural killer and CD8+ T cells to livers. These observations indicate that there is an important role for ROCK1 cleavage to limit immunogenic cell death, which was not replicated by systemic ROCK inhibitor administration. As a result, concomitant administration of ROCK inhibitors with cancer therapeutics would be unlikely to result in therapeutic benefit by inducing ICD to increase anti-tumour immune responses.


Migration through physical constraints is enabled by MAPK-induced cell softening via actin cytoskeleton re-organization.

  • Dominika A Rudzka‎ et al.
  • Journal of cell science‎
  • 2019‎

Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics.This article has an associated First Person interview with the first author of the paper.


Propolis Exerts an Anti-Inflammatory Effect on PMA-Differentiated THP-1 Cells via Inhibition of Purine Nucleoside Phosphorylase.

  • Abdulmalik M Alqarni‎ et al.
  • Metabolites‎
  • 2019‎

Previous research has shown that propolis has immunomodulatory activity. Propolis extracts from different geographic origins were assessed for their anti-inflammatory activities by investigating their ability to alter the production of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1β (IL-1β), IL-6 and IL-10 in THP-1-derived macrophage cells co-stimulated with lipopolysaccharide (LPS). All the propolis extracts suppressed the TNF-α and IL-6 LPS-stimulated levels. Similar suppression effects were detected for IL-1β, but the release of this cytokine was synergised by propolis samples from Ghana and Indonesia when compared with LPS. Overall, the Cameroonian propolis extract (P-C) was the most active and this was evaluated for its effects on the metabolic profile of unstimulated macrophages or macrophages activated by LPS. The levels of 81 polar metabolites were identified by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS altered the energy, amino acid and nucleotide metabolism in THP-1 cells, and interpretation of the metabolic pathways showed that P-C reversed some of the effects of LPS. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by inhibition of pro-inflammatory cytokines and by metabolic reprogramming of LPS activity in macrophage cells, suggesting an immunomodulatory effect.


Phosphoenolpyruvate carboxylase identified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism.

  • Janet Storm‎ et al.
  • PLoS pathogens‎
  • 2014‎

Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10(Δpepc) ), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10(Δpepc) had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using (13)C-U-D-glucose and (13)C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10(Δpepc) and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of (13)C,(15)N-U-glutamine was similar in both parasite lines, although the flux was lower in D10(Δpepc); it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery.


Application of Holistic Liquid Chromatography-High Resolution Mass Spectrometry Based Urinary Metabolomics for Prostate Cancer Detection and Biomarker Discovery.

  • Tong Zhang‎ et al.
  • PloS one‎
  • 2013‎

Human exhibit wide variations in their metabolic profiles because of differences in genetic factors, diet and lifestyle. Therefore in order to detect metabolic differences between individuals robust analytical methods are required. A protocol was produced based on the use of Liquid Chromatography- High Resolution Mass Spectrometry (LC-HRMS) in combination with orthogonal Hydrophilic Interaction (HILIC) and Reversed Phase (RP) liquid chromatography methods for the analysis of the urinary metabolome, which was then evaluated as a diagnostic tool for prostate cancer (a common but highly heterogeneous condition). The LC-HRMS method was found to be robust and exhibited excellent repeatability for retention times (<±1%), and mass accuracy (<±1 ppm). Based on normalised data (against creatinine levels, osmolality or MS total useful signals/MSTUS) coupled with supervised multivariate analysis using Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA), we were able to discriminate urine samples from men with or without prostate cancer with R2Y(cum) >0.9. In addition, using the receiver operator characteristics (ROC) test, the area under curve (AUC) for the combination of the four best characterised biomarker compounds was 0.896. The four biomarker compounds were also found to differ significantly (P<0.05) between an independent patient cohort and controls. This is the first time such a rigorous test has been applied to this type of model. If validated, the established protocol provides a robust approach with a potentially wide application to metabolite profiling of human biofluids in health and disease.


Metabolomic profiling reveals that Drosophila melanogaster larvae with the y mutation have altered lysine metabolism.

  • Mohammed Al Bratty‎ et al.
  • FEBS open bio‎
  • 2012‎

Yellow (y) encodes a protein which is closely similar to major royal jelly proteins produced by bees. However, the function of y remains largely unknown. Metabolomic profiling was carried out on third instar Oregon R (OR) and yellow (y) Drosophila melanogaster larvae. Phenylalanine, tyrosine and DOPA were all elevated in y as might be expected since the mutation blocks melanin biosynthesis. The most consistent effects were related to lysine metabolism, with the lysine metabolite saccharopine being much higher in y. In addition, lysine acetate was elevated, and the levels of methyl lysines were lower, in y than in OR.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: