Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.

  • Binchen Mao‎ et al.
  • Journal of the American Chemical Society‎
  • 2014‎

We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5-22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10-25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function.


Computational design of an α-gliadin peptidase.

  • Sydney R Gordon‎ et al.
  • Journal of the American Chemical Society‎
  • 2012‎

The ability to rationally modify enzymes to perform novel chemical transformations is essential for the rapid production of next-generation protein therapeutics. Here we describe the use of chemical principles to identify a naturally occurring acid-active peptidase, and the subsequent use of computational protein design tools to reengineer its specificity toward immunogenic elements found in gluten that are the proposed cause of celiac disease. The engineered enzyme exhibits a k(cat)/K(M) of 568 M(-1) s(-1), representing a 116-fold greater proteolytic activity for a model gluten tetrapeptide than the native template enzyme, as well as an over 800-fold switch in substrate specificity toward immunogenic portions of gluten peptides. The computationally engineered enzyme is resistant to proteolysis by digestive proteases and degrades over 95% of an immunogenic peptide implicated in celiac disease in under an hour. Thus, through identification of a natural enzyme with the pre-existing qualities relevant to an ultimate goal and redefinition of its substrate specificity using computational modeling, we were able to generate an enzyme with potential as a therapeutic for celiac disease.


Accurate automated protein NMR structure determination using unassigned NOESY data.

  • Srivatsan Raman‎ et al.
  • Journal of the American Chemical Society‎
  • 2010‎

Conventional NMR structure determination requires nearly complete assignment of the cross peaks of a refined NOESY peak list. Depending on the size of the protein and quality of the spectral data, this can be a time-consuming manual process requiring several rounds of peak list refinement and structure determination. Programs such as Aria, CYANA, and AutoStructure can generate models using unassigned NOESY data but are very sensitive to the quality of the input peak lists and can converge to inaccurate structures if the signal-to-noise of the peak lists is low. Here, we show that models with high accuracy and reliability can be produced by combining the strengths of the high-resolution structure prediction program Rosetta with global measures of the agreement between structure models and experimental data. A first round of models generated using CS-Rosetta (Rosetta supplemented with backbone chemical shift information) are filtered on the basis of their goodness-of-fit with unassigned NOESY peak lists using the DP-score, and the best fitting models are subjected to high resolution refinement with the Rosetta rebuild-and-refine protocol. This hybrid approach uses both local backbone chemical shift and the unassigned NOESY data to direct Rosetta trajectories toward the native structure and produces more accurate models than AutoStructure/CYANA or CS-Rosetta alone, particularly when using raw unedited NOESY peak lists. We also show that when accurate manually refined NOESY peak lists are available, Rosetta refinement can consistently increase the accuracy of models generated using CYANA and AutoStructure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: